Assessing within-woman changes in mammographic density: a comparison of fully versus semi-automated area-based approaches View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

Marta Cecilia Busana, Bianca L. De Stavola, Ulla Sovio, Jingmei Li, Sue Moss, Keith Humphreys, Isabel dos-Santos-Silva

ABSTRACT

BACKGROUND: Mammographic density (MD) varies throughout a woman's life. We compared the performance of a fully automated (ImageJ-based) method to the observer-dependent Cumulus approach in the assessment of within-woman changes in MD over time. METHODS: MD was assessed in annual pre-diagnostic films (from age 40 to early 50s) from 313 breast cancer cases and 452 matched controls using Cumulus (left medio-lateral oblique (MLO) readings) and the ImageJ-based method (mean left-right MLO readings). Linear mixed models were used to compare within-woman changes in MD among controls. Associations between individual-specific MD trajectories and breast cancer were examined using conditional logistic regression. RESULTS: The age-related trajectories predicted by Cumulus and the ImageJ-based method were similar for all MD measures, except that the ImageJ-based method yielded slightly higher (by 2.54%, 95% CI 2.07%, 3.00%) estimates for percent MD. For both methods, the yearly rate of change in percent MD was twice faster after menopause than before, and higher BMI was associated with lower mean percent MD, but not associated with rate of change. Both methods yielded similar associations of individual-specific MD trajectories with breast cancer risk. CONCLUSIONS: The ImageJ-based method is a valid fully automated alternative to Cumulus for measuring within-woman changes in MD in digitized films. The Age Trial is registered as an International Standard Randomized Controlled Trial, number ISRCTN24647151. More... »

PAGES

481-491

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10552-016-0722-9

DOI

http://dx.doi.org/10.1007/s10552-016-0722-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007108121

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26847236


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammary Glands, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busana", 
        "givenName": "Marta Cecilia", 
        "id": "sg:person.0622346330.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622346330.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Stavola", 
        "givenName": "Bianca L.", 
        "id": "sg:person.0635767712.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635767712.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK", 
            "Department of Obstetrics and Gynaecology, University of Cambridge, Level 2, The Rosie Hospital, Robinson Way, Box 223, CB2 0SW, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sovio", 
        "givenName": "Ulla", 
        "id": "sg:person.01133030564.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133030564.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jingmei", 
        "id": "sg:person.013760043547.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moss", 
        "givenName": "Sue", 
        "id": "sg:person.011611703032.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611703032.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Humphreys", 
        "givenName": "Keith", 
        "id": "sg:person.0624052041.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624052041.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "dos-Santos-Silva", 
        "givenName": "Isabel", 
        "id": "sg:person.01230144105.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230144105.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/aje/kws446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006458287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kws446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006458287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-10-1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006543075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829229", 
          "https://doi.org/10.1186/bcr3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829229", 
          "https://doi.org/10.1186/bcr3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009604327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009604327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008469-199912000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008469-199912000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008469-199912000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010141266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwn063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010829718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-06-1047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016574692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa062790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022154822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/028418698430241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023481947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1539038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023986662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2014.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026804871", 
          "https://doi.org/10.1038/bjc.2014.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2014.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026804871", 
          "https://doi.org/10.1038/bjc.2014.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-05-0798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034615610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djk066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038666853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-09-1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040449857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-07-0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042918440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(09)70078-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044481756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-08-0170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047940693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.28825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048562829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.28825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048562829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-06-0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049006559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)69834-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049442125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djs254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050861007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/56/9/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jms.6.3.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075173964", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "BACKGROUND: Mammographic density (MD) varies throughout a woman's life. We compared the performance of a fully automated (ImageJ-based) method to the observer-dependent Cumulus approach in the assessment of within-woman changes in MD over time.\nMETHODS: MD was assessed in annual pre-diagnostic films (from age 40 to early 50s) from 313 breast cancer cases and 452 matched controls using Cumulus (left medio-lateral oblique (MLO) readings) and the ImageJ-based method (mean left-right MLO readings). Linear mixed models were used to compare within-woman changes in MD among controls. Associations between individual-specific MD trajectories and breast cancer were examined using conditional logistic regression.\nRESULTS: The age-related trajectories predicted by Cumulus and the ImageJ-based method were similar for all MD measures, except that the ImageJ-based method yielded slightly higher (by 2.54%, 95% CI 2.07%, 3.00%) estimates for percent MD. For both methods, the yearly rate of change in percent MD was twice faster after menopause than before, and higher BMI was associated with lower mean percent MD, but not associated with rate of change. Both methods yielded similar associations of individual-specific MD trajectories with breast cancer risk.\nCONCLUSIONS: The ImageJ-based method is a valid fully automated alternative to Cumulus for measuring within-woman changes in MD in digitized films. The Age Trial is registered as an International Standard Randomized Controlled Trial, number ISRCTN24647151.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10552-016-0722-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5138812", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7388772", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100917", 
        "issn": [
          "0957-5243", 
          "1573-7225"
        ], 
        "name": "Cancer Causes & Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Assessing within-woman changes in mammographic density: a comparison of fully versus semi-automated area-based approaches", 
    "pagination": "481-491", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21dc30a184527e24676be0dd050c9249b85605c182cbe1a7619b8e6ebe0e2610"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26847236"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10552-016-0722-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007108121"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10552-016-0722-9", 
      "https://app.dimensions.ai/details/publication/pub.1007108121"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10552-016-0722-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10552-016-0722-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10552-016-0722-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10552-016-0722-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10552-016-0722-9'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      65 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10552-016-0722-9 schema:about N36ef3cfcbd8c499681083c08e4fb5523
2 N3f6ed99f862b4e98ba7fe2dd20bf8a28
3 N4af378f15d66409c8a3831e0ce9520db
4 N73fbbaf255564a9ead60a2b95e2f72c2
5 N75d03cc21562418995f32f2a01e09f17
6 N7eae9830a7da4dcdaf2b8d928bd50812
7 N992403a573314930a6ad94af67b0cfcc
8 Na6634f223fc64588acbbbbec64ad1d72
9 Nb144d1d158ec4362919e978d9fc66106
10 Nb1b4452668fe4efa87363d658a9513ef
11 Nd804669288b24d05890c525e7552b460
12 Nebf894f9ab6145179a316cb37e0a58f5
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author Nb2efc56fb78a42c99665832cc27a11cc
16 schema:citation sg:pub.10.1038/bjc.2014.82
17 sg:pub.10.1186/bcr3238
18 https://app.dimensions.ai/details/publication/pub.1075173964
19 https://doi.org/10.1002/ijc.25053
20 https://doi.org/10.1002/ijc.28825
21 https://doi.org/10.1016/s0140-6736(06)69834-6
22 https://doi.org/10.1016/s1470-2045(09)70078-6
23 https://doi.org/10.1056/nejmoa062790
24 https://doi.org/10.1080/028418698430241
25 https://doi.org/10.1088/0031-9155/56/9/005
26 https://doi.org/10.1093/aje/kwn063
27 https://doi.org/10.1093/aje/kws446
28 https://doi.org/10.1093/jnci/djk066
29 https://doi.org/10.1093/jnci/djs254
30 https://doi.org/10.1097/00008469-199912000-00006
31 https://doi.org/10.1118/1.1539038
32 https://doi.org/10.1136/jms.6.3.144
33 https://doi.org/10.1158/1055-9965.epi-05-0798
34 https://doi.org/10.1158/1055-9965.epi-06-0034
35 https://doi.org/10.1158/1055-9965.epi-06-1047
36 https://doi.org/10.1158/1055-9965.epi-07-0085
37 https://doi.org/10.1158/1055-9965.epi-08-0170
38 https://doi.org/10.1158/1055-9965.epi-09-1059
39 https://doi.org/10.1158/1055-9965.epi-10-1150
40 schema:datePublished 2016-04
41 schema:datePublishedReg 2016-04-01
42 schema:description BACKGROUND: Mammographic density (MD) varies throughout a woman's life. We compared the performance of a fully automated (ImageJ-based) method to the observer-dependent Cumulus approach in the assessment of within-woman changes in MD over time. METHODS: MD was assessed in annual pre-diagnostic films (from age 40 to early 50s) from 313 breast cancer cases and 452 matched controls using Cumulus (left medio-lateral oblique (MLO) readings) and the ImageJ-based method (mean left-right MLO readings). Linear mixed models were used to compare within-woman changes in MD among controls. Associations between individual-specific MD trajectories and breast cancer were examined using conditional logistic regression. RESULTS: The age-related trajectories predicted by Cumulus and the ImageJ-based method were similar for all MD measures, except that the ImageJ-based method yielded slightly higher (by 2.54%, 95% CI 2.07%, 3.00%) estimates for percent MD. For both methods, the yearly rate of change in percent MD was twice faster after menopause than before, and higher BMI was associated with lower mean percent MD, but not associated with rate of change. Both methods yielded similar associations of individual-specific MD trajectories with breast cancer risk. CONCLUSIONS: The ImageJ-based method is a valid fully automated alternative to Cumulus for measuring within-woman changes in MD in digitized films. The Age Trial is registered as an International Standard Randomized Controlled Trial, number ISRCTN24647151.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N0e3df54d255c490ebc53cd0b89e632b8
47 Nafe54a911cf54a5997a5eb3b2581a5c9
48 sg:journal.1100917
49 schema:name Assessing within-woman changes in mammographic density: a comparison of fully versus semi-automated area-based approaches
50 schema:pagination 481-491
51 schema:productId N1b4dd47baaa14eccb0385f67c0d24d0b
52 N28370c7651d94898aa22cbee87913a4f
53 N4390d357ca4c4af89e721d700610e157
54 N807f1370ddb44ad1a22b5170a69976c2
55 Ncb42bcddb4384c968ad5352471feab85
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007108121
57 https://doi.org/10.1007/s10552-016-0722-9
58 schema:sdDatePublished 2019-04-11T09:33
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na23eb8691691457e9564cac3df12136c
61 schema:url http://link.springer.com/10.1007/s10552-016-0722-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0e3df54d255c490ebc53cd0b89e632b8 schema:issueNumber 4
66 rdf:type schema:PublicationIssue
67 N1b4dd47baaa14eccb0385f67c0d24d0b schema:name nlm_unique_id
68 schema:value 9100846
69 rdf:type schema:PropertyValue
70 N28370c7651d94898aa22cbee87913a4f schema:name doi
71 schema:value 10.1007/s10552-016-0722-9
72 rdf:type schema:PropertyValue
73 N36ef3cfcbd8c499681083c08e4fb5523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Middle Aged
75 rdf:type schema:DefinedTerm
76 N3f6ed99f862b4e98ba7fe2dd20bf8a28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Female
78 rdf:type schema:DefinedTerm
79 N4390d357ca4c4af89e721d700610e157 schema:name pubmed_id
80 schema:value 26847236
81 rdf:type schema:PropertyValue
82 N4af378f15d66409c8a3831e0ce9520db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 N73fbbaf255564a9ead60a2b95e2f72c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Logistic Models
87 rdf:type schema:DefinedTerm
88 N75d03cc21562418995f32f2a01e09f17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Case-Control Studies
90 rdf:type schema:DefinedTerm
91 N7878630f400f4e759d3982ce8bbf5e6d rdf:first sg:person.01230144105.36
92 rdf:rest rdf:nil
93 N7eae9830a7da4dcdaf2b8d928bd50812 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Breast Neoplasms
95 rdf:type schema:DefinedTerm
96 N807f1370ddb44ad1a22b5170a69976c2 schema:name dimensions_id
97 schema:value pub.1007108121
98 rdf:type schema:PropertyValue
99 N86aa5c1d802e451fa94d3f648293fba0 rdf:first sg:person.011611703032.94
100 rdf:rest N895ccf21278d4a6197feafe935668c0d
101 N895ccf21278d4a6197feafe935668c0d rdf:first sg:person.0624052041.17
102 rdf:rest N7878630f400f4e759d3982ce8bbf5e6d
103 N8e355de9719a48908a29344ea3ad925f rdf:first sg:person.013760043547.76
104 rdf:rest N86aa5c1d802e451fa94d3f648293fba0
105 N992403a573314930a6ad94af67b0cfcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Mammography
107 rdf:type schema:DefinedTerm
108 Na23eb8691691457e9564cac3df12136c schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Na6634f223fc64588acbbbbec64ad1d72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Mammary Glands, Human
112 rdf:type schema:DefinedTerm
113 Nafe54a911cf54a5997a5eb3b2581a5c9 schema:volumeNumber 27
114 rdf:type schema:PublicationVolume
115 Nb144d1d158ec4362919e978d9fc66106 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Breast Density
117 rdf:type schema:DefinedTerm
118 Nb1b4452668fe4efa87363d658a9513ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 Nb2efc56fb78a42c99665832cc27a11cc rdf:first sg:person.0622346330.82
122 rdf:rest Nc4edb55102aa488cb256d0755427d1bf
123 Nc4edb55102aa488cb256d0755427d1bf rdf:first sg:person.0635767712.70
124 rdf:rest Nd6ad53988afe4130840e6d5f65bfd1d9
125 Ncb42bcddb4384c968ad5352471feab85 schema:name readcube_id
126 schema:value 21dc30a184527e24676be0dd050c9249b85605c182cbe1a7619b8e6ebe0e2610
127 rdf:type schema:PropertyValue
128 Nd6ad53988afe4130840e6d5f65bfd1d9 rdf:first sg:person.01133030564.09
129 rdf:rest N8e355de9719a48908a29344ea3ad925f
130 Nd804669288b24d05890c525e7552b460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Risk Factors
132 rdf:type schema:DefinedTerm
133 Nebf894f9ab6145179a316cb37e0a58f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Breast
135 rdf:type schema:DefinedTerm
136 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
137 schema:name Medical and Health Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
140 schema:name Public Health and Health Services
141 rdf:type schema:DefinedTerm
142 sg:grant.5138812 http://pending.schema.org/fundedItem sg:pub.10.1007/s10552-016-0722-9
143 rdf:type schema:MonetaryGrant
144 sg:grant.7388772 http://pending.schema.org/fundedItem sg:pub.10.1007/s10552-016-0722-9
145 rdf:type schema:MonetaryGrant
146 sg:journal.1100917 schema:issn 0957-5243
147 1573-7225
148 schema:name Cancer Causes & Control
149 rdf:type schema:Periodical
150 sg:person.01133030564.09 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
151 schema:familyName Sovio
152 schema:givenName Ulla
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133030564.09
154 rdf:type schema:Person
155 sg:person.011611703032.94 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
156 schema:familyName Moss
157 schema:givenName Sue
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611703032.94
159 rdf:type schema:Person
160 sg:person.01230144105.36 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
161 schema:familyName dos-Santos-Silva
162 schema:givenName Isabel
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230144105.36
164 rdf:type schema:Person
165 sg:person.013760043547.76 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
166 schema:familyName Li
167 schema:givenName Jingmei
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76
169 rdf:type schema:Person
170 sg:person.0622346330.82 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
171 schema:familyName Busana
172 schema:givenName Marta Cecilia
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622346330.82
174 rdf:type schema:Person
175 sg:person.0624052041.17 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
176 schema:familyName Humphreys
177 schema:givenName Keith
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624052041.17
179 rdf:type schema:Person
180 sg:person.0635767712.70 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
181 schema:familyName De Stavola
182 schema:givenName Bianca L.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635767712.70
184 rdf:type schema:Person
185 sg:pub.10.1038/bjc.2014.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026804871
186 https://doi.org/10.1038/bjc.2014.82
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/bcr3238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829229
189 https://doi.org/10.1186/bcr3238
190 rdf:type schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1075173964 schema:CreativeWork
192 https://doi.org/10.1002/ijc.25053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009604327
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/ijc.28825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048562829
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0140-6736(06)69834-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049442125
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s1470-2045(09)70078-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044481756
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1056/nejmoa062790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022154822
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/028418698430241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023481947
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/0031-9155/56/9/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029149
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/aje/kwn063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010829718
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/aje/kws446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006458287
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/jnci/djk066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038666853
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/jnci/djs254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050861007
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/00008469-199912000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010141266
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1118/1.1539038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023986662
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1136/jms.6.3.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062818254
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1158/1055-9965.epi-05-0798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034615610
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1158/1055-9965.epi-06-0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049006559
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1158/1055-9965.epi-06-1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016574692
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1158/1055-9965.epi-07-0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042918440
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1158/1055-9965.epi-08-0170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047940693
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1158/1055-9965.epi-09-1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040449857
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1158/1055-9965.epi-10-1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006543075
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
235 schema:name Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, 171 77, Stockholm, Sweden
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
238 schema:name Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, London, UK
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
241 schema:name Department of Obstetrics and Gynaecology, University of Cambridge, Level 2, The Rosie Hospital, Robinson Way, Box 223, CB2 0SW, Cambridge, UK
242 Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
245 schema:name Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...