Comparison of cancer registry and clinical data as predictors for breast cancer survival View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08-28

AUTHORS

Johanna Seppänen, Sirpa Heinävaara, Kaija Holli, Timo Hakulinen

ABSTRACT

BackgroundIn spite of the increasing amount of clinically relevant information for survival from breast cancer, the amount of data recorded in a population-based cancer registry is limited and the registry-based survival predictions are routinely made without clinical details.ObjectiveTo find out how important is the role of screening and clinical tumor characteristics in addition to cancer registry information in describing the breast cancer survival.MethodsA representative clinical database on 483 breast cancer patients diagnosed during 1996–1997 in Tampere University Hospital Area was linked with Finnish Cancer Registry data and a survival model including the available registry variables was compared to models including screen-detection information and clinical tumor characteristics also.Results and conclusionEstimates of registry stage and age act as surrogates for clinical variables and mammography-detection. The surrogacy was found to be almost complete indicating that clinical variables are not necessarily needed when making breast cancer mortality predictions based on a population-based cancer registry. In cases with dissimilar staging cancer registry stage gave a better picture of the breast cancer survival than the clinical stage. More... »

PAGES

1299-1304

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10552-008-9201-2

DOI

http://dx.doi.org/10.1007/s10552-008-9201-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053209877

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18752035


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cause of Death", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Finland", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Invasiveness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Progesterone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rural Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urban Population", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.424339.b", 
          "name": [
            "Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sepp\u00e4nen", 
        "givenName": "Johanna", 
        "id": "sg:person.0713264563.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713264563.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiation and Nuclear Safety Authority, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.15935.3b", 
          "name": [
            "Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland", 
            "Radiation and Nuclear Safety Authority, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hein\u00e4vaara", 
        "givenName": "Sirpa", 
        "id": "sg:person.01051607263.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051607263.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Oncology, Tampere University Hospital, Tampere, Finland", 
          "id": "http://www.grid.ac/institutes/grid.412330.7", 
          "name": [
            "Medical School, Tampere University, Tampere, Finland", 
            "Department of Oncology, Tampere University Hospital, Tampere, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holli", 
        "givenName": "Kaija", 
        "id": "sg:person.01121554640.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121554640.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.424339.b", 
          "name": [
            "Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hakulinen", 
        "givenName": "Timo", 
        "id": "sg:person.01302516444.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302516444.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-08-28", 
    "datePublishedReg": "2008-08-28", 
    "description": "BackgroundIn spite of the increasing amount of clinically relevant information for survival from breast cancer, the amount of data recorded in a population-based cancer registry is limited and the registry-based survival predictions are routinely made without clinical details.ObjectiveTo find out how important is the role of screening and clinical tumor characteristics in addition to cancer registry information in describing the breast cancer survival.MethodsA representative clinical database on 483 breast cancer patients diagnosed during 1996\u20131997 in Tampere University Hospital Area was linked with Finnish Cancer Registry data and a survival model including the available registry variables was compared to models including screen-detection information and clinical tumor characteristics also.Results and conclusionEstimates of registry stage and age act as surrogates for clinical variables and mammography-detection. The surrogacy was found to be almost complete indicating that clinical variables are not necessarily needed when making breast cancer mortality predictions based on a population-based cancer registry. In cases with dissimilar staging cancer registry stage gave a better picture of the breast cancer survival than the clinical stage.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10552-008-9201-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100917", 
        "issn": [
          "0957-5243", 
          "1573-7225"
        ], 
        "name": "Cancer Causes & Control", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "breast cancer survival", 
      "population-based cancer registries", 
      "clinical tumor characteristics", 
      "Cancer Registry", 
      "cancer survival", 
      "tumor characteristics", 
      "clinical variables", 
      "Tampere University Hospital area", 
      "Finnish Cancer Registry data", 
      "cancer registry information", 
      "breast cancer patients", 
      "cancer mortality predictions", 
      "cancer registry data", 
      "University Hospital area", 
      "role of screening", 
      "clinical stage", 
      "cancer patients", 
      "clinical details", 
      "breast cancer", 
      "registry data", 
      "clinical data", 
      "mortality prediction", 
      "clinical database", 
      "BackgroundIn spite", 
      "registry variables", 
      "hospital areas", 
      "survival prediction", 
      "registry", 
      "registry information", 
      "survival", 
      "survival models", 
      "patients", 
      "ObjectiveTo", 
      "cancer", 
      "ConclusionEstimates", 
      "Age Act", 
      "predictors", 
      "screening", 
      "stage", 
      "data", 
      "variables", 
      "relevant information", 
      "database", 
      "cases", 
      "surrogate", 
      "role", 
      "information", 
      "characteristics", 
      "spite", 
      "addition", 
      "surrogacy", 
      "amount", 
      "comparison", 
      "better picture", 
      "area", 
      "model", 
      "results", 
      "picture", 
      "acts", 
      "prediction", 
      "detail", 
      "amount of data"
    ], 
    "name": "Comparison of cancer registry and clinical data as predictors for breast cancer survival", 
    "pagination": "1299-1304", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053209877"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10552-008-9201-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18752035"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10552-008-9201-2", 
      "https://app.dimensions.ai/details/publication/pub.1053209877"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_468.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10552-008-9201-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10552-008-9201-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10552-008-9201-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10552-008-9201-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10552-008-9201-2'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      20 PREDICATES      113 URIs      104 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10552-008-9201-2 schema:about N0542ce78c96846b6ba20370302612f04
2 N135ff117ba5941288ce24e9ec969419f
3 N1c36a71b6cc94f9899a6d0ab2b6356a6
4 N378f1186e134443cab313803bd97577d
5 N45ac9b69b5094ffb9abfde3a24a0d8d5
6 N4af5b5e2cb5e4a919089d506d06d3dd8
7 N56a8c3fcc27e4ab48633c8f77b6b3859
8 N5ee8617813b046509ba3bb63c85a9be2
9 N5fea3aec0d154e2c846f084b28db9f2b
10 N670f58960fa749ef98493e1fb54779b1
11 N6ea1a5e13bad464d89f6b3619012c815
12 N73a750f296b44d7886717d94b589fab5
13 N74aa8ef8c19f4820b70ff19c7157560e
14 N757359b76a8c4cd1814d88455929cbee
15 N7d73e0edfad84fa19f5c9b9943a2ef64
16 N8535bfe26d9f49bc92a53559382a2145
17 N859c92e8ba344a97828c7e6ea8943321
18 N875c2a7de7ba4dbea6f26dd754e928c9
19 N8795918202d5457f875b68d9fa754bd9
20 N951c27b6d8be4aaeb347418baa5a1bd7
21 Nb64a4c40e0a84446bc7028874fbd0ac0
22 Nb6de1fa8784c4081b64855a8fb23d0b9
23 Nc811d75a74b14d87bb632d3536866480
24 Ne5b43d866c16433188704d2ead025a59
25 Ned7e019a077f4169b5d0b1b92f7fdcfa
26 anzsrc-for:11
27 anzsrc-for:1112
28 anzsrc-for:1117
29 schema:author N8dd49c4f0a94443a8239e0c14e622366
30 schema:datePublished 2008-08-28
31 schema:datePublishedReg 2008-08-28
32 schema:description BackgroundIn spite of the increasing amount of clinically relevant information for survival from breast cancer, the amount of data recorded in a population-based cancer registry is limited and the registry-based survival predictions are routinely made without clinical details.ObjectiveTo find out how important is the role of screening and clinical tumor characteristics in addition to cancer registry information in describing the breast cancer survival.MethodsA representative clinical database on 483 breast cancer patients diagnosed during 1996–1997 in Tampere University Hospital Area was linked with Finnish Cancer Registry data and a survival model including the available registry variables was compared to models including screen-detection information and clinical tumor characteristics also.Results and conclusionEstimates of registry stage and age act as surrogates for clinical variables and mammography-detection. The surrogacy was found to be almost complete indicating that clinical variables are not necessarily needed when making breast cancer mortality predictions based on a population-based cancer registry. In cases with dissimilar staging cancer registry stage gave a better picture of the breast cancer survival than the clinical stage.
33 schema:genre article
34 schema:isAccessibleForFree false
35 schema:isPartOf N75503bd72e664df8bfae215ea0794ed8
36 Na5f6269b8f954ff6b8025172b1b7aea9
37 sg:journal.1100917
38 schema:keywords Age Act
39 BackgroundIn spite
40 Cancer Registry
41 ConclusionEstimates
42 Finnish Cancer Registry data
43 ObjectiveTo
44 Tampere University Hospital area
45 University Hospital area
46 acts
47 addition
48 amount
49 amount of data
50 area
51 better picture
52 breast cancer
53 breast cancer patients
54 breast cancer survival
55 cancer
56 cancer mortality predictions
57 cancer patients
58 cancer registry data
59 cancer registry information
60 cancer survival
61 cases
62 characteristics
63 clinical data
64 clinical database
65 clinical details
66 clinical stage
67 clinical tumor characteristics
68 clinical variables
69 comparison
70 data
71 database
72 detail
73 hospital areas
74 information
75 model
76 mortality prediction
77 patients
78 picture
79 population-based cancer registries
80 prediction
81 predictors
82 registry
83 registry data
84 registry information
85 registry variables
86 relevant information
87 results
88 role
89 role of screening
90 screening
91 spite
92 stage
93 surrogacy
94 surrogate
95 survival
96 survival models
97 survival prediction
98 tumor characteristics
99 variables
100 schema:name Comparison of cancer registry and clinical data as predictors for breast cancer survival
101 schema:pagination 1299-1304
102 schema:productId N102a0f067ce74147817832f76cfed4e3
103 N7f29e5173ffe49b08f4d725614af2e96
104 N848be22d4ddb4cb49e76c047fefd80aa
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053209877
106 https://doi.org/10.1007/s10552-008-9201-2
107 schema:sdDatePublished 2022-10-01T06:35
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N9a4e9551200842a48cac328f0c7619a7
110 schema:url https://doi.org/10.1007/s10552-008-9201-2
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N0542ce78c96846b6ba20370302612f04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Breast Neoplasms
116 rdf:type schema:DefinedTerm
117 N102a0f067ce74147817832f76cfed4e3 schema:name dimensions_id
118 schema:value pub.1053209877
119 rdf:type schema:PropertyValue
120 N135ff117ba5941288ce24e9ec969419f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Likelihood Functions
122 rdf:type schema:DefinedTerm
123 N17cdb6833118463294947f7e717bb530 rdf:first sg:person.01302516444.80
124 rdf:rest rdf:nil
125 N1c36a71b6cc94f9899a6d0ab2b6356a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Mammography
127 rdf:type schema:DefinedTerm
128 N378f1186e134443cab313803bd97577d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Registries
130 rdf:type schema:DefinedTerm
131 N45ac9b69b5094ffb9abfde3a24a0d8d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Neoplasm Metastasis
133 rdf:type schema:DefinedTerm
134 N4af5b5e2cb5e4a919089d506d06d3dd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Cause of Death
136 rdf:type schema:DefinedTerm
137 N56a8c3fcc27e4ab48633c8f77b6b3859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Survival Rate
139 rdf:type schema:DefinedTerm
140 N5ee8617813b046509ba3bb63c85a9be2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 N5fea3aec0d154e2c846f084b28db9f2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Regression Analysis
145 rdf:type schema:DefinedTerm
146 N670f58960fa749ef98493e1fb54779b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Predictive Value of Tests
148 rdf:type schema:DefinedTerm
149 N6ea1a5e13bad464d89f6b3619012c815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Aged
151 rdf:type schema:DefinedTerm
152 N73a750f296b44d7886717d94b589fab5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Middle Aged
154 rdf:type schema:DefinedTerm
155 N74aa8ef8c19f4820b70ff19c7157560e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Female
157 rdf:type schema:DefinedTerm
158 N75503bd72e664df8bfae215ea0794ed8 schema:volumeNumber 19
159 rdf:type schema:PublicationVolume
160 N757359b76a8c4cd1814d88455929cbee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Neoplasm Invasiveness
162 rdf:type schema:DefinedTerm
163 N7d73e0edfad84fa19f5c9b9943a2ef64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Tumor Burden
165 rdf:type schema:DefinedTerm
166 N7f29e5173ffe49b08f4d725614af2e96 schema:name pubmed_id
167 schema:value 18752035
168 rdf:type schema:PropertyValue
169 N848be22d4ddb4cb49e76c047fefd80aa schema:name doi
170 schema:value 10.1007/s10552-008-9201-2
171 rdf:type schema:PropertyValue
172 N8535bfe26d9f49bc92a53559382a2145 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Models, Statistical
174 rdf:type schema:DefinedTerm
175 N859c92e8ba344a97828c7e6ea8943321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Lymph Nodes
177 rdf:type schema:DefinedTerm
178 N875c2a7de7ba4dbea6f26dd754e928c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Neoplasm Staging
180 rdf:type schema:DefinedTerm
181 N8795918202d5457f875b68d9fa754bd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Time Factors
183 rdf:type schema:DefinedTerm
184 N8dd49c4f0a94443a8239e0c14e622366 rdf:first sg:person.0713264563.89
185 rdf:rest Ncb6f93f4781b47ef90248100331092a1
186 N951c27b6d8be4aaeb347418baa5a1bd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Receptors, Progesterone
188 rdf:type schema:DefinedTerm
189 N9a4e9551200842a48cac328f0c7619a7 schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 Na5f6269b8f954ff6b8025172b1b7aea9 schema:issueNumber 10
192 rdf:type schema:PublicationIssue
193 Nb64a4c40e0a84446bc7028874fbd0ac0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Rural Population
195 rdf:type schema:DefinedTerm
196 Nb6de1fa8784c4081b64855a8fb23d0b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Mass Screening
198 rdf:type schema:DefinedTerm
199 Nc811d75a74b14d87bb632d3536866480 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Finland
201 rdf:type schema:DefinedTerm
202 Ncb6f93f4781b47ef90248100331092a1 rdf:first sg:person.01051607263.28
203 rdf:rest Ndee99a2f2bb6435e8265ca7a50f9009e
204 Ndee99a2f2bb6435e8265ca7a50f9009e rdf:first sg:person.01121554640.00
205 rdf:rest N17cdb6833118463294947f7e717bb530
206 Ne5b43d866c16433188704d2ead025a59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Urban Population
208 rdf:type schema:DefinedTerm
209 Ned7e019a077f4169b5d0b1b92f7fdcfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Receptors, Estrogen
211 rdf:type schema:DefinedTerm
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
216 schema:name Oncology and Carcinogenesis
217 rdf:type schema:DefinedTerm
218 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
219 schema:name Public Health and Health Services
220 rdf:type schema:DefinedTerm
221 sg:journal.1100917 schema:issn 0957-5243
222 1573-7225
223 schema:name Cancer Causes & Control
224 schema:publisher Springer Nature
225 rdf:type schema:Periodical
226 sg:person.01051607263.28 schema:affiliation grid-institutes:grid.15935.3b
227 schema:familyName Heinävaara
228 schema:givenName Sirpa
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051607263.28
230 rdf:type schema:Person
231 sg:person.01121554640.00 schema:affiliation grid-institutes:grid.412330.7
232 schema:familyName Holli
233 schema:givenName Kaija
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121554640.00
235 rdf:type schema:Person
236 sg:person.01302516444.80 schema:affiliation grid-institutes:grid.424339.b
237 schema:familyName Hakulinen
238 schema:givenName Timo
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302516444.80
240 rdf:type schema:Person
241 sg:person.0713264563.89 schema:affiliation grid-institutes:grid.424339.b
242 schema:familyName Seppänen
243 schema:givenName Johanna
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713264563.89
245 rdf:type schema:Person
246 grid-institutes:grid.15935.3b schema:alternateName Radiation and Nuclear Safety Authority, Helsinki, Finland
247 schema:name Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland
248 Radiation and Nuclear Safety Authority, Helsinki, Finland
249 rdf:type schema:Organization
250 grid-institutes:grid.412330.7 schema:alternateName Department of Oncology, Tampere University Hospital, Tampere, Finland
251 schema:name Department of Oncology, Tampere University Hospital, Tampere, Finland
252 Medical School, Tampere University, Tampere, Finland
253 rdf:type schema:Organization
254 grid-institutes:grid.424339.b schema:alternateName Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland
255 schema:name Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Pieni Roobertinkatu 9, 00130, Helsinki, Finland
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...