Cancer death rates for older Asian-Americans: classification by race versus ethnicity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-03

AUTHORS

Diane S. Lauderdale, Dezheng Huo

ABSTRACT

OBJECTIVE: For most US health statistics, Asian-Americans are grouped into a single race category. We use a unique data file to determine site-specific cancer death rates for persons aged 65 and older in six Asian-American ethnic subgroups (Chinese, Indian, Japanese, Korean, Filipino, and Vietnamese) and determine for which cancer sites the aggregate Asian-American race category is a misleading summary of subgroup cancer risk. METHODS: We previously determined all-cause death rates for Asian-American subgroups using Social Security files, in collaboration with a colleague at the Social Security Administration. By linking these records to death certificates, we determine cause-specific death rates for 21 cancer sites. We test whether there is significant heterogeneity among subgroups, using Poisson regression. RESULTS: For about half of cancer sites, all Asian subgroups have lower rates than Whites. For three sites most subgroups have higher rates than Whites (stomach, liver, and cervix), but there is significant heterogeneity. For other cancer sites, there is an inconsistent pattern, with some subgroups having rates lower than Whites and some having rates similar to Whites. Asian Indians are most often the Asian subgroup with a divergent rate. CONCLUSION: The aggregate Asian-American rate masks significant subgroup heterogeneity for many, but not all, cancer sites. More... »

PAGES

135-146

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10552-007-9079-4

DOI

http://dx.doi.org/10.1007/s10552-007-9079-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018655402

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17992577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Americans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Demography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mortality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oceanic Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Health Studies, University of Chicago, 5841 S. Maryland Ave. MC2007, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauderdale", 
        "givenName": "Diane S.", 
        "id": "sg:person.01015523303.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015523303.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Health Studies, University of Chicago, 5841 S. Maryland Ave. MC2007, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huo", 
        "givenName": "Dezheng", 
        "id": "sg:person.01256131727.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256131727.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1026582308352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001612964", 
          "https://doi.org/10.1023/a:1026582308352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0164027594162005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001798708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0164027594162005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001798708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1078311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005962126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/jaas.2000.0017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007688798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01419870.1993.9993773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021501425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2307/2061164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026799070", 
          "https://doi.org/10.2307/2061164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1353/dem.2002.0028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033100306", 
          "https://doi.org/10.1353/dem.2002.0028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.21511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046407294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.21511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046407294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03", 
    "datePublishedReg": "2008-03-01", 
    "description": "OBJECTIVE: For most US health statistics, Asian-Americans are grouped into a single race category. We use a unique data file to determine site-specific cancer death rates for persons aged 65 and older in six Asian-American ethnic subgroups (Chinese, Indian, Japanese, Korean, Filipino, and Vietnamese) and determine for which cancer sites the aggregate Asian-American race category is a misleading summary of subgroup cancer risk.\nMETHODS: We previously determined all-cause death rates for Asian-American subgroups using Social Security files, in collaboration with a colleague at the Social Security Administration. By linking these records to death certificates, we determine cause-specific death rates for 21 cancer sites. We test whether there is significant heterogeneity among subgroups, using Poisson regression.\nRESULTS: For about half of cancer sites, all Asian subgroups have lower rates than Whites. For three sites most subgroups have higher rates than Whites (stomach, liver, and cervix), but there is significant heterogeneity. For other cancer sites, there is an inconsistent pattern, with some subgroups having rates lower than Whites and some having rates similar to Whites. Asian Indians are most often the Asian subgroup with a divergent rate.\nCONCLUSION: The aggregate Asian-American rate masks significant subgroup heterogeneity for many, but not all, cancer sites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10552-007-9079-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2446925", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1100917", 
        "issn": [
          "0957-5243", 
          "1573-7225"
        ], 
        "name": "Cancer Causes & Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Cancer death rates for older Asian-Americans: classification by race versus ethnicity", 
    "pagination": "135-146", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58e29e663388c8d07a9cf6b89a24e7f965bb462cf9d75389f2ef51b2c9fbab65"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17992577"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9100846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10552-007-9079-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018655402"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10552-007-9079-4", 
      "https://app.dimensions.ai/details/publication/pub.1018655402"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13104_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10552-007-9079-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10552-007-9079-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10552-007-9079-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10552-007-9079-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10552-007-9079-4'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      48 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10552-007-9079-4 schema:about N0aa91c4c4c5847d8b09b25475a4f360f
2 N31522048159b4a228344cab7ec0d0228
3 N4558cf458ca442749f4a1ea55ca21ec6
4 N4af7a1aad012480a981ba043369a6306
5 N5a5bdf7f780c46678b532e21b611f520
6 N8e042891f01a4ef5b9db3b4f88ad7c9a
7 N9a32192170d74e22bfdedde17cfc1eb5
8 Nb0ffeb0c0f5945278b19b4901417e99f
9 Nd51b1e5992ed4c62aab048c1e91d6736
10 Nea3eadc48b154196babd6831c5aef562
11 Nfca23585a10544c58d36634fc4d3b122
12 anzsrc-for:11
13 anzsrc-for:1117
14 schema:author N8a5d62f75db041aab826b59639a379d2
15 schema:citation sg:pub.10.1023/a:1026582308352
16 sg:pub.10.1353/dem.2002.0028
17 sg:pub.10.2307/2061164
18 https://doi.org/10.1002/cncr.21511
19 https://doi.org/10.1080/01419870.1993.9993773
20 https://doi.org/10.1126/science.1078311
21 https://doi.org/10.1177/0164027594162005
22 https://doi.org/10.1353/jaas.2000.0017
23 schema:datePublished 2008-03
24 schema:datePublishedReg 2008-03-01
25 schema:description OBJECTIVE: For most US health statistics, Asian-Americans are grouped into a single race category. We use a unique data file to determine site-specific cancer death rates for persons aged 65 and older in six Asian-American ethnic subgroups (Chinese, Indian, Japanese, Korean, Filipino, and Vietnamese) and determine for which cancer sites the aggregate Asian-American race category is a misleading summary of subgroup cancer risk. METHODS: We previously determined all-cause death rates for Asian-American subgroups using Social Security files, in collaboration with a colleague at the Social Security Administration. By linking these records to death certificates, we determine cause-specific death rates for 21 cancer sites. We test whether there is significant heterogeneity among subgroups, using Poisson regression. RESULTS: For about half of cancer sites, all Asian subgroups have lower rates than Whites. For three sites most subgroups have higher rates than Whites (stomach, liver, and cervix), but there is significant heterogeneity. For other cancer sites, there is an inconsistent pattern, with some subgroups having rates lower than Whites and some having rates similar to Whites. Asian Indians are most often the Asian subgroup with a divergent rate. CONCLUSION: The aggregate Asian-American rate masks significant subgroup heterogeneity for many, but not all, cancer sites.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N19b006c8a907481eaf0ff373b89a49fc
30 Nee1cccd6bc7e47ba8e27c551e6a4c7ff
31 sg:journal.1100917
32 schema:name Cancer death rates for older Asian-Americans: classification by race versus ethnicity
33 schema:pagination 135-146
34 schema:productId N131a6c47b2d74a03b70b9f703fd78e0f
35 N2791c2de59134cdbbc4c6a11badcb6f4
36 Nc1b5a8d672244ebc9f951521c0174a29
37 Nc5a62b6db1464cb1af88403fd1abd592
38 Ne493c0793951486eac8a5ed80c492317
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018655402
40 https://doi.org/10.1007/s10552-007-9079-4
41 schema:sdDatePublished 2019-04-11T14:33
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N5e29864a6d6d4ccba80f363c5126da6e
44 schema:url http://link.springer.com/10.1007/s10552-007-9079-4
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N048b52ce97b74cf5981c41cedbc66bd1 rdf:first sg:person.01256131727.02
49 rdf:rest rdf:nil
50 N0aa91c4c4c5847d8b09b25475a4f360f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Oceanic Ancestry Group
52 rdf:type schema:DefinedTerm
53 N131a6c47b2d74a03b70b9f703fd78e0f schema:name pubmed_id
54 schema:value 17992577
55 rdf:type schema:PropertyValue
56 N19b006c8a907481eaf0ff373b89a49fc schema:issueNumber 2
57 rdf:type schema:PublicationIssue
58 N2791c2de59134cdbbc4c6a11badcb6f4 schema:name readcube_id
59 schema:value 58e29e663388c8d07a9cf6b89a24e7f965bb462cf9d75389f2ef51b2c9fbab65
60 rdf:type schema:PropertyValue
61 N31522048159b4a228344cab7ec0d0228 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Asian Americans
63 rdf:type schema:DefinedTerm
64 N4558cf458ca442749f4a1ea55ca21ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Male
66 rdf:type schema:DefinedTerm
67 N4af7a1aad012480a981ba043369a6306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Neoplasms
69 rdf:type schema:DefinedTerm
70 N5a5bdf7f780c46678b532e21b611f520 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N5e29864a6d6d4ccba80f363c5126da6e schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N7335725e31fe4c8fa4d0c3e73c0d85bb schema:name Department of Health Studies, University of Chicago, 5841 S. Maryland Ave. MC2007, 60637, Chicago, IL, USA
76 rdf:type schema:Organization
77 N8a5d62f75db041aab826b59639a379d2 rdf:first sg:person.01015523303.66
78 rdf:rest N048b52ce97b74cf5981c41cedbc66bd1
79 N8e042891f01a4ef5b9db3b4f88ad7c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Demography
81 rdf:type schema:DefinedTerm
82 N9a32192170d74e22bfdedde17cfc1eb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name United States
84 rdf:type schema:DefinedTerm
85 Na0b15604eb0a4fa3b1b9d3ec92611b65 schema:name Department of Health Studies, University of Chicago, 5841 S. Maryland Ave. MC2007, 60637, Chicago, IL, USA
86 rdf:type schema:Organization
87 Nb0ffeb0c0f5945278b19b4901417e99f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Aged, 80 and over
89 rdf:type schema:DefinedTerm
90 Nc1b5a8d672244ebc9f951521c0174a29 schema:name dimensions_id
91 schema:value pub.1018655402
92 rdf:type schema:PropertyValue
93 Nc5a62b6db1464cb1af88403fd1abd592 schema:name nlm_unique_id
94 schema:value 9100846
95 rdf:type schema:PropertyValue
96 Nd51b1e5992ed4c62aab048c1e91d6736 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Female
98 rdf:type schema:DefinedTerm
99 Ne493c0793951486eac8a5ed80c492317 schema:name doi
100 schema:value 10.1007/s10552-007-9079-4
101 rdf:type schema:PropertyValue
102 Nea3eadc48b154196babd6831c5aef562 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Aged
104 rdf:type schema:DefinedTerm
105 Nee1cccd6bc7e47ba8e27c551e6a4c7ff schema:volumeNumber 19
106 rdf:type schema:PublicationVolume
107 Nfca23585a10544c58d36634fc4d3b122 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Mortality
109 rdf:type schema:DefinedTerm
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
114 schema:name Public Health and Health Services
115 rdf:type schema:DefinedTerm
116 sg:grant.2446925 http://pending.schema.org/fundedItem sg:pub.10.1007/s10552-007-9079-4
117 rdf:type schema:MonetaryGrant
118 sg:journal.1100917 schema:issn 0957-5243
119 1573-7225
120 schema:name Cancer Causes & Control
121 rdf:type schema:Periodical
122 sg:person.01015523303.66 schema:affiliation Na0b15604eb0a4fa3b1b9d3ec92611b65
123 schema:familyName Lauderdale
124 schema:givenName Diane S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015523303.66
126 rdf:type schema:Person
127 sg:person.01256131727.02 schema:affiliation N7335725e31fe4c8fa4d0c3e73c0d85bb
128 schema:familyName Huo
129 schema:givenName Dezheng
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256131727.02
131 rdf:type schema:Person
132 sg:pub.10.1023/a:1026582308352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001612964
133 https://doi.org/10.1023/a:1026582308352
134 rdf:type schema:CreativeWork
135 sg:pub.10.1353/dem.2002.0028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033100306
136 https://doi.org/10.1353/dem.2002.0028
137 rdf:type schema:CreativeWork
138 sg:pub.10.2307/2061164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026799070
139 https://doi.org/10.2307/2061164
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/cncr.21511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046407294
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/01419870.1993.9993773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021501425
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.1078311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962126
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1177/0164027594162005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001798708
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1353/jaas.2000.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007688798
150 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...