Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-06-08

AUTHORS

Saverio Caini, Giovanni Fiorito, Domenico Palli, Benedetta Bendinelli, Silvia Polidoro, Valentina Silvestri, Laura Ottini, Daniela Ambrogetti, Ines Zanna, Calogero Saieva, Giovanna Masala

ABSTRACT

PurposeMammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition.MethodsWe analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III–IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a “candidate pathways” approach focusing on pre-defined inflammation-related pathways.ResultsIn EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The “apoptosis signalling” was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women.ConclusionPre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC. More... »

PAGES

435-444

References to SciGraph publications

  • 2011-04-01. Caspases and cancer in CELL DEATH & DIFFERENTIATION
  • 2017-11-10. Body mass index, diet, and exercise: testing possible linkages to breast cancer risk via DNA methylation in BREAST CANCER RESEARCH AND TREATMENT
  • 2002-04-01. The p53 pathway in breast cancer in BREAST CANCER RESEARCH
  • 2019-09-18. Reproductive characteristics are associated with gene-specific promoter methylation status in breast cancer in BMC CANCER
  • 2019-08-07. Inflammation and breast density among female Chinese immigrants: exploring variations across neighborhoods in CANCER CAUSES & CONTROL
  • 2009-07-27. Sex steroid metabolism polymorphisms and mammographic density in pre- and early perimenopausal women in BREAST CANCER RESEARCH
  • 2012-06-15. SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips in GENOME BIOLOGY
  • 2012-05-08. DNA methylation arrays as surrogate measures of cell mixture distribution in BMC BIOINFORMATICS
  • 2020-02-07. Low-penetrance susceptibility variants and postmenopausal oestrogen receptor positive breast cancer in JOURNAL OF GENETICS
  • 2000-07. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States) in CANCER CAUSES & CONTROL
  • 2015-06-04. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium in BREAST CANCER RESEARCH
  • 2018-07-17. Association between low-grade inflammation and Breast cancer and B-cell Myeloma and Non-Hodgkin Lymphoma: findings from two prospective cohorts in SCIENTIFIC REPORTS
  • 2010-09-01. Association between mitogen-activated protein kinase kinase kinase 1 rs889312 polymorphism and breast cancer risk: evidence from 59,977 subjects in BREAST CANCER RESEARCH AND TREATMENT
  • 2014-10-24. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk in NATURE COMMUNICATIONS
  • 2015-11-06. CYP1A1 and GSTP1 gene variations in breast cancer: a systematic review and case–control study in FAMILIAL CANCER
  • 2018-05-18. DNA methylation signatures of breast cancer in peripheral T-cells in BMC CANCER
  • 2010-11-30. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis in BMC BIOINFORMATICS
  • 2000-12. Reproductive and hormonal factors associated with mammographic breast density by age (United States) in CANCER CAUSES & CONTROL
  • 2019-10-21. DNA methylation-based biological age, genome-wide average DNA methylation, and conventional breast cancer risk factors in SCIENTIFIC REPORTS
  • 2017-05-06. Mammographic breast density and breast cancer risk in a Mediterranean population: a nested case–control study in the EPIC Florence cohort in BREAST CANCER RESEARCH AND TREATMENT
  • 2018-08-09. High mammographic density in women is associated with protumor inflammation in BREAST CANCER RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w

    DOI

    http://dx.doi.org/10.1007/s10549-021-06273-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138691076

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34101077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CpG Islands", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caini", 
            "givenName": "Saverio", 
            "id": "sg:person.01161605365.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161605365.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy", 
                "Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiorito", 
            "givenName": "Giovanni", 
            "id": "sg:person.01175672551.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175672551.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palli", 
            "givenName": "Domenico", 
            "id": "sg:person.010014537677.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014537677.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bendinelli", 
            "givenName": "Benedetta", 
            "id": "sg:person.0615025337.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615025337.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Italian Institute for Genomic Medicine (IIGM), Turin, Italy", 
              "id": "http://www.grid.ac/institutes/grid.428948.b", 
              "name": [
                "Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK", 
                "Italian Institute for Genomic Medicine (IIGM), Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polidoro", 
            "givenName": "Silvia", 
            "id": "sg:person.0713134342.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713134342.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silvestri", 
            "givenName": "Valentina", 
            "id": "sg:person.01032702170.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032702170.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ottini", 
            "givenName": "Laura", 
            "id": "sg:person.0622773500.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622773500.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ambrogetti", 
            "givenName": "Daniela", 
            "id": "sg:person.01012362050.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012362050.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zanna", 
            "givenName": "Ines", 
            "id": "sg:person.01111041627.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111041627.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saieva", 
            "givenName": "Calogero", 
            "id": "sg:person.0673106145.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673106145.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masala", 
            "givenName": "Giovanna", 
            "id": "sg:person.01215545050.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215545050.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/cdd.2011.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014018139", 
              "https://doi.org/10.1038/cdd.2011.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-019-6120-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121096964", 
              "https://doi.org/10.1186/s12885-019-6120-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-6-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035557760", 
              "https://doi.org/10.1186/gb-2012-13-6-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10689-015-9849-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013756834", 
              "https://doi.org/10.1007/s10689-015-9849-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-010-1151-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835823", 
              "https://doi.org/10.1007/s10549-010-1151-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0592-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053111201", 
              "https://doi.org/10.1186/s13058-015-0592-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025448148", 
              "https://doi.org/10.1186/1471-2105-11-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4573-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092633684", 
              "https://doi.org/10.1007/s10549-017-4573-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-019-1174-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124664500", 
              "https://doi.org/10.1007/s12041-019-1174-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032275059", 
              "https://doi.org/10.1186/bcr426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047392734", 
              "https://doi.org/10.1186/1471-2105-13-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015726036", 
              "https://doi.org/10.1038/ncomms6303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-018-1010-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083328", 
              "https://doi.org/10.1186/s13058-018-1010-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026514032085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017942614", 
              "https://doi.org/10.1023/a:1026514032085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-29041-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105534040", 
              "https://doi.org/10.1038/s41598-018-29041-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007111735", 
              "https://doi.org/10.1186/bcr2340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-51475-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121959558", 
              "https://doi.org/10.1038/s41598-019-51475-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4274-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085200965", 
              "https://doi.org/10.1007/s10549-017-4274-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008926607428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001814314", 
              "https://doi.org/10.1023/a:1008926607428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-019-01206-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120193634", 
              "https://doi.org/10.1007/s10552-019-01206-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-018-4482-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104089087", 
              "https://doi.org/10.1186/s12885-018-4482-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-06-08", 
        "datePublishedReg": "2021-06-08", 
        "description": "PurposeMammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition.MethodsWe analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III\u2013IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a \u201ccandidate pathways\u201d approach focusing on pre-defined inflammation-related pathways.ResultsIn EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The \u201capoptosis signalling\u201d was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women.ConclusionPre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10549-021-06273-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1092777", 
            "issn": [
              "0167-6806", 
              "1573-7217"
            ], 
            "name": "Breast Cancer Research and Treatment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "189"
          }
        ], 
        "keywords": [
          "breast density", 
          "pre-diagnostic blood samples", 
          "EPIC-Florence cohort", 
          "European Prospective Investigation", 
          "epigenome-wide association studies", 
          "breast cancer risk", 
          "mammographic breast density", 
          "inflammation-related pathways", 
          "pairs of women", 
          "case-only study", 
          "candidate pathways", 
          "Prospective Investigation", 
          "breast cancer", 
          "cancer risk", 
          "blood samples", 
          "cell apoptosis", 
          "women", 
          "Infinium MethylationEPIC BeadChip", 
          "DNA methylation patterns", 
          "Illumina Infinium MethylationEPIC BeadChip", 
          "methylation patterns", 
          "cancer", 
          "multiple testing", 
          "MethylationEPIC BeadChip", 
          "novel clues", 
          "apoptosis signaling", 
          "annotation clusters", 
          "single CpG site", 
          "CpG sites", 
          "pathway", 
          "association studies", 
          "statistical analysis", 
          "cohort", 
          "gene promoter", 
          "MethodsWe", 
          "breast", 
          "DNA methylation", 
          "study", 
          "total", 
          "risk", 
          "apoptosis", 
          "markers", 
          "nutrition", 
          "genes", 
          "regulation", 
          "signaling", 
          "patterns", 
          "DNA transcription", 
          "mechanism", 
          "DNA binding", 
          "DMRs", 
          "testing", 
          "protein", 
          "clues", 
          "binding", 
          "methylation", 
          "BC", 
          "transcription", 
          "promoter", 
          "BeadChip", 
          "transcription regulation", 
          "MBD", 
          "samples", 
          "sites", 
          "correction", 
          "investigation", 
          "analysis", 
          "sections", 
          "region", 
          "density", 
          "approach", 
          "clusters", 
          "pairs"
        ], 
        "name": "Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study in the EPIC-Florence cohort", 
        "pagination": "435-444", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138691076"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10549-021-06273-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34101077"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10549-021-06273-w", 
          "https://app.dimensions.ai/details/publication/pub.1138691076"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_891.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10549-021-06273-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    336 TRIPLES      22 PREDICATES      129 URIs      100 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10549-021-06273-w schema:about N0b193d7e327347fe97f9ed375876c8c4
    2 N15d209d9bf8a4f948206519ad4e7450b
    3 N587e14fdc1934ca08f2d9b659f28d0b3
    4 N8a8ee9a7415e49ba9a2e8af0255bca74
    5 Na9c1f184a02c464495ba579894a8bd26
    6 Ncc3a9d45fa03457c832255a5db926384
    7 Nd63efde974e94ea894bd3675f84d1a98
    8 Ne5c0c6a25a4c44259716a218f4bbc0c9
    9 Nf9ab0c2a999348a482795f773b2ac86d
    10 anzsrc-for:11
    11 anzsrc-for:1112
    12 schema:author N36b61be29f874d6ca303960a34833751
    13 schema:citation sg:pub.10.1007/s10549-010-1151-1
    14 sg:pub.10.1007/s10549-017-4274-9
    15 sg:pub.10.1007/s10549-017-4573-1
    16 sg:pub.10.1007/s10552-019-01206-x
    17 sg:pub.10.1007/s10689-015-9849-1
    18 sg:pub.10.1007/s12041-019-1174-2
    19 sg:pub.10.1023/a:1008926607428
    20 sg:pub.10.1023/a:1026514032085
    21 sg:pub.10.1038/cdd.2011.30
    22 sg:pub.10.1038/ncomms6303
    23 sg:pub.10.1038/s41598-018-29041-1
    24 sg:pub.10.1038/s41598-019-51475-4
    25 sg:pub.10.1186/1471-2105-11-587
    26 sg:pub.10.1186/1471-2105-13-86
    27 sg:pub.10.1186/bcr2340
    28 sg:pub.10.1186/bcr426
    29 sg:pub.10.1186/gb-2012-13-6-r44
    30 sg:pub.10.1186/s12885-018-4482-7
    31 sg:pub.10.1186/s12885-019-6120-4
    32 sg:pub.10.1186/s13058-015-0592-1
    33 sg:pub.10.1186/s13058-018-1010-2
    34 schema:datePublished 2021-06-08
    35 schema:datePublishedReg 2021-06-08
    36 schema:description PurposeMammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition.MethodsWe analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III–IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a “candidate pathways” approach focusing on pre-defined inflammation-related pathways.ResultsIn EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The “apoptosis signalling” was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women.ConclusionPre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC.
    37 schema:genre article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N3530a0afabd14cb78fcd2a6ee57a849a
    41 Ndfbd49ded66243c7869ae2d7f71a91ee
    42 sg:journal.1092777
    43 schema:keywords BC
    44 BeadChip
    45 CpG sites
    46 DMRs
    47 DNA binding
    48 DNA methylation
    49 DNA methylation patterns
    50 DNA transcription
    51 EPIC-Florence cohort
    52 European Prospective Investigation
    53 Illumina Infinium MethylationEPIC BeadChip
    54 Infinium MethylationEPIC BeadChip
    55 MBD
    56 MethodsWe
    57 MethylationEPIC BeadChip
    58 Prospective Investigation
    59 analysis
    60 annotation clusters
    61 apoptosis
    62 apoptosis signaling
    63 approach
    64 association studies
    65 binding
    66 blood samples
    67 breast
    68 breast cancer
    69 breast cancer risk
    70 breast density
    71 cancer
    72 cancer risk
    73 candidate pathways
    74 case-only study
    75 cell apoptosis
    76 clues
    77 clusters
    78 cohort
    79 correction
    80 density
    81 epigenome-wide association studies
    82 gene promoter
    83 genes
    84 inflammation-related pathways
    85 investigation
    86 mammographic breast density
    87 markers
    88 mechanism
    89 methylation
    90 methylation patterns
    91 multiple testing
    92 novel clues
    93 nutrition
    94 pairs
    95 pairs of women
    96 pathway
    97 patterns
    98 pre-diagnostic blood samples
    99 promoter
    100 protein
    101 region
    102 regulation
    103 risk
    104 samples
    105 sections
    106 signaling
    107 single CpG site
    108 sites
    109 statistical analysis
    110 study
    111 testing
    112 total
    113 transcription
    114 transcription regulation
    115 women
    116 schema:name Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study in the EPIC-Florence cohort
    117 schema:pagination 435-444
    118 schema:productId N15e7c2b44c7548108e58b787576de0e7
    119 N2501c11a3c9e4877bdf7ca48e9e80ca3
    120 N3630fe91925f42c1b5efa379bb684e5a
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138691076
    122 https://doi.org/10.1007/s10549-021-06273-w
    123 schema:sdDatePublished 2022-05-20T07:38
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher N99e6bc41bae346a4a6dde939a477848a
    126 schema:url https://doi.org/10.1007/s10549-021-06273-w
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N0b193d7e327347fe97f9ed375876c8c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Prospective Studies
    132 rdf:type schema:DefinedTerm
    133 N15d209d9bf8a4f948206519ad4e7450b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Female
    135 rdf:type schema:DefinedTerm
    136 N15e7c2b44c7548108e58b787576de0e7 schema:name pubmed_id
    137 schema:value 34101077
    138 rdf:type schema:PropertyValue
    139 N2501c11a3c9e4877bdf7ca48e9e80ca3 schema:name dimensions_id
    140 schema:value pub.1138691076
    141 rdf:type schema:PropertyValue
    142 N2b1c82d1d55e42199b6897a57e91e255 rdf:first sg:person.01175672551.90
    143 rdf:rest Nff36657dfc974713a6ae6e88485eadfd
    144 N3530a0afabd14cb78fcd2a6ee57a849a schema:issueNumber 2
    145 rdf:type schema:PublicationIssue
    146 N3630fe91925f42c1b5efa379bb684e5a schema:name doi
    147 schema:value 10.1007/s10549-021-06273-w
    148 rdf:type schema:PropertyValue
    149 N36b61be29f874d6ca303960a34833751 rdf:first sg:person.01161605365.07
    150 rdf:rest N2b1c82d1d55e42199b6897a57e91e255
    151 N507f19b2968a44da9f20de9b67e1ccd1 rdf:first sg:person.01111041627.17
    152 rdf:rest Nb2d4de2b3aab48769879268c5ea4d9d1
    153 N587e14fdc1934ca08f2d9b659f28d0b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Humans
    155 rdf:type schema:DefinedTerm
    156 N6acda9e2821f4b298ecc55c43978053f rdf:first sg:person.01012362050.20
    157 rdf:rest N507f19b2968a44da9f20de9b67e1ccd1
    158 N83f9f2a647f246339f6ab949f519cc4e rdf:first sg:person.0713134342.95
    159 rdf:rest Nbbc027823690423cbdf02e9c6b39d01c
    160 N8a8ee9a7415e49ba9a2e8af0255bca74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Epigenesis, Genetic
    162 rdf:type schema:DefinedTerm
    163 N99e6bc41bae346a4a6dde939a477848a schema:name Springer Nature - SN SciGraph project
    164 rdf:type schema:Organization
    165 Na9c1f184a02c464495ba579894a8bd26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name DNA Methylation
    167 rdf:type schema:DefinedTerm
    168 Nb2d4de2b3aab48769879268c5ea4d9d1 rdf:first sg:person.0673106145.95
    169 rdf:rest Ne5ebb92fceb9488f8386ee53515a8924
    170 Nbbc027823690423cbdf02e9c6b39d01c rdf:first sg:person.01032702170.15
    171 rdf:rest Nf4f8216687464501b82426347a25b605
    172 Nbdc88544d52d4038b16929ef9548b95c rdf:first sg:person.0615025337.65
    173 rdf:rest N83f9f2a647f246339f6ab949f519cc4e
    174 Ncc3a9d45fa03457c832255a5db926384 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Breast Neoplasms
    176 rdf:type schema:DefinedTerm
    177 Nd63efde974e94ea894bd3675f84d1a98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Breast Density
    179 rdf:type schema:DefinedTerm
    180 Ndfbd49ded66243c7869ae2d7f71a91ee schema:volumeNumber 189
    181 rdf:type schema:PublicationVolume
    182 Ne5c0c6a25a4c44259716a218f4bbc0c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Breast
    184 rdf:type schema:DefinedTerm
    185 Ne5ebb92fceb9488f8386ee53515a8924 rdf:first sg:person.01215545050.27
    186 rdf:rest rdf:nil
    187 Nf4f8216687464501b82426347a25b605 rdf:first sg:person.0622773500.08
    188 rdf:rest N6acda9e2821f4b298ecc55c43978053f
    189 Nf9ab0c2a999348a482795f773b2ac86d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name CpG Islands
    191 rdf:type schema:DefinedTerm
    192 Nff36657dfc974713a6ae6e88485eadfd rdf:first sg:person.010014537677.09
    193 rdf:rest Nbdc88544d52d4038b16929ef9548b95c
    194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Medical and Health Sciences
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Oncology and Carcinogenesis
    199 rdf:type schema:DefinedTerm
    200 sg:journal.1092777 schema:issn 0167-6806
    201 1573-7217
    202 schema:name Breast Cancer Research and Treatment
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.010014537677.09 schema:affiliation grid-institutes:grid.419555.9
    206 schema:familyName Palli
    207 schema:givenName Domenico
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014537677.09
    209 rdf:type schema:Person
    210 sg:person.01012362050.20 schema:affiliation grid-institutes:grid.419555.9
    211 schema:familyName Ambrogetti
    212 schema:givenName Daniela
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012362050.20
    214 rdf:type schema:Person
    215 sg:person.01032702170.15 schema:affiliation grid-institutes:grid.7841.a
    216 schema:familyName Silvestri
    217 schema:givenName Valentina
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032702170.15
    219 rdf:type schema:Person
    220 sg:person.01111041627.17 schema:affiliation grid-institutes:grid.419555.9
    221 schema:familyName Zanna
    222 schema:givenName Ines
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111041627.17
    224 rdf:type schema:Person
    225 sg:person.01161605365.07 schema:affiliation grid-institutes:grid.419555.9
    226 schema:familyName Caini
    227 schema:givenName Saverio
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161605365.07
    229 rdf:type schema:Person
    230 sg:person.01175672551.90 schema:affiliation grid-institutes:grid.7445.2
    231 schema:familyName Fiorito
    232 schema:givenName Giovanni
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175672551.90
    234 rdf:type schema:Person
    235 sg:person.01215545050.27 schema:affiliation grid-institutes:grid.419555.9
    236 schema:familyName Masala
    237 schema:givenName Giovanna
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215545050.27
    239 rdf:type schema:Person
    240 sg:person.0615025337.65 schema:affiliation grid-institutes:grid.419555.9
    241 schema:familyName Bendinelli
    242 schema:givenName Benedetta
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615025337.65
    244 rdf:type schema:Person
    245 sg:person.0622773500.08 schema:affiliation grid-institutes:grid.7841.a
    246 schema:familyName Ottini
    247 schema:givenName Laura
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622773500.08
    249 rdf:type schema:Person
    250 sg:person.0673106145.95 schema:affiliation grid-institutes:grid.419555.9
    251 schema:familyName Saieva
    252 schema:givenName Calogero
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673106145.95
    254 rdf:type schema:Person
    255 sg:person.0713134342.95 schema:affiliation grid-institutes:grid.428948.b
    256 schema:familyName Polidoro
    257 schema:givenName Silvia
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713134342.95
    259 rdf:type schema:Person
    260 sg:pub.10.1007/s10549-010-1151-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835823
    261 https://doi.org/10.1007/s10549-010-1151-1
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s10549-017-4274-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085200965
    264 https://doi.org/10.1007/s10549-017-4274-9
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s10549-017-4573-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092633684
    267 https://doi.org/10.1007/s10549-017-4573-1
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s10552-019-01206-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1120193634
    270 https://doi.org/10.1007/s10552-019-01206-x
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s10689-015-9849-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013756834
    273 https://doi.org/10.1007/s10689-015-9849-1
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s12041-019-1174-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124664500
    276 https://doi.org/10.1007/s12041-019-1174-2
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1023/a:1008926607428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001814314
    279 https://doi.org/10.1023/a:1008926607428
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1023/a:1026514032085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017942614
    282 https://doi.org/10.1023/a:1026514032085
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/cdd.2011.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014018139
    285 https://doi.org/10.1038/cdd.2011.30
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ncomms6303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015726036
    288 https://doi.org/10.1038/ncomms6303
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41598-018-29041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105534040
    291 https://doi.org/10.1038/s41598-018-29041-1
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41598-019-51475-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121959558
    294 https://doi.org/10.1038/s41598-019-51475-4
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1186/1471-2105-11-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448148
    297 https://doi.org/10.1186/1471-2105-11-587
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1186/1471-2105-13-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047392734
    300 https://doi.org/10.1186/1471-2105-13-86
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1186/bcr2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007111735
    303 https://doi.org/10.1186/bcr2340
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1186/bcr426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032275059
    306 https://doi.org/10.1186/bcr426
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1186/gb-2012-13-6-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557760
    309 https://doi.org/10.1186/gb-2012-13-6-r44
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/s12885-018-4482-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104089087
    312 https://doi.org/10.1186/s12885-018-4482-7
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/s12885-019-6120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121096964
    315 https://doi.org/10.1186/s12885-019-6120-4
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/s13058-015-0592-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053111201
    318 https://doi.org/10.1186/s13058-015-0592-1
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/s13058-018-1010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106083328
    321 https://doi.org/10.1186/s13058-018-1010-2
    322 rdf:type schema:CreativeWork
    323 grid-institutes:grid.419555.9 schema:alternateName Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
    324 schema:name Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
    325 rdf:type schema:Organization
    326 grid-institutes:grid.428948.b schema:alternateName Italian Institute for Genomic Medicine (IIGM), Turin, Italy
    327 schema:name Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
    328 Italian Institute for Genomic Medicine (IIGM), Turin, Italy
    329 rdf:type schema:Organization
    330 grid-institutes:grid.7445.2 schema:alternateName Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
    331 schema:name Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
    332 Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
    333 rdf:type schema:Organization
    334 grid-institutes:grid.7841.a schema:alternateName Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
    335 schema:name Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
    336 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...