Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-06-08

AUTHORS

Saverio Caini, Giovanni Fiorito, Domenico Palli, Benedetta Bendinelli, Silvia Polidoro, Valentina Silvestri, Laura Ottini, Daniela Ambrogetti, Ines Zanna, Calogero Saieva, Giovanna Masala

ABSTRACT

PurposeMammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition.MethodsWe analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III–IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a “candidate pathways” approach focusing on pre-defined inflammation-related pathways.ResultsIn EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The “apoptosis signalling” was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women.ConclusionPre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC. More... »

PAGES

435-444

References to SciGraph publications

  • 2011-04-01. Caspases and cancer in CELL DEATH & DIFFERENTIATION
  • 2017-11-10. Body mass index, diet, and exercise: testing possible linkages to breast cancer risk via DNA methylation in BREAST CANCER RESEARCH AND TREATMENT
  • 2002-04-01. The p53 pathway in breast cancer in BREAST CANCER RESEARCH
  • 2019-08-07. Inflammation and breast density among female Chinese immigrants: exploring variations across neighborhoods in CANCER CAUSES & CONTROL
  • 2019-09-18. Reproductive characteristics are associated with gene-specific promoter methylation status in breast cancer in BMC CANCER
  • 2009-07-27. Sex steroid metabolism polymorphisms and mammographic density in pre- and early perimenopausal women in BREAST CANCER RESEARCH
  • 2012-06-15. SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips in GENOME BIOLOGY
  • 2012-05-08. DNA methylation arrays as surrogate measures of cell mixture distribution in BMC BIOINFORMATICS
  • 2020-02-07. Low-penetrance susceptibility variants and postmenopausal oestrogen receptor positive breast cancer in JOURNAL OF GENETICS
  • 2000-07. Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States) in CANCER CAUSES & CONTROL
  • 2015-06-04. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium in BREAST CANCER RESEARCH
  • 2018-07-17. Association between low-grade inflammation and Breast cancer and B-cell Myeloma and Non-Hodgkin Lymphoma: findings from two prospective cohorts in SCIENTIFIC REPORTS
  • 2010-09-01. Association between mitogen-activated protein kinase kinase kinase 1 rs889312 polymorphism and breast cancer risk: evidence from 59,977 subjects in BREAST CANCER RESEARCH AND TREATMENT
  • 2014-10-24. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk in NATURE COMMUNICATIONS
  • 2015-11-06. CYP1A1 and GSTP1 gene variations in breast cancer: a systematic review and case–control study in FAMILIAL CANCER
  • 2018-05-18. DNA methylation signatures of breast cancer in peripheral T-cells in BMC CANCER
  • 2010-11-30. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis in BMC BIOINFORMATICS
  • 2000-12. Reproductive and hormonal factors associated with mammographic breast density by age (United States) in CANCER CAUSES & CONTROL
  • 2019-10-21. DNA methylation-based biological age, genome-wide average DNA methylation, and conventional breast cancer risk factors in SCIENTIFIC REPORTS
  • 2017-05-06. Mammographic breast density and breast cancer risk in a Mediterranean population: a nested case–control study in the EPIC Florence cohort in BREAST CANCER RESEARCH AND TREATMENT
  • 2018-08-09. High mammographic density in women is associated with protumor inflammation in BREAST CANCER RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w

    DOI

    http://dx.doi.org/10.1007/s10549-021-06273-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138691076

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34101077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CpG Islands", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caini", 
            "givenName": "Saverio", 
            "id": "sg:person.01161605365.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161605365.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy", 
                "Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiorito", 
            "givenName": "Giovanni", 
            "id": "sg:person.01175672551.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175672551.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palli", 
            "givenName": "Domenico", 
            "id": "sg:person.010014537677.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014537677.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bendinelli", 
            "givenName": "Benedetta", 
            "id": "sg:person.0615025337.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615025337.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Italian Institute for Genomic Medicine (IIGM), Turin, Italy", 
              "id": "http://www.grid.ac/institutes/grid.428948.b", 
              "name": [
                "Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK", 
                "Italian Institute for Genomic Medicine (IIGM), Turin, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polidoro", 
            "givenName": "Silvia", 
            "id": "sg:person.0713134342.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713134342.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silvestri", 
            "givenName": "Valentina", 
            "id": "sg:person.01032702170.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032702170.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ottini", 
            "givenName": "Laura", 
            "id": "sg:person.0622773500.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622773500.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ambrogetti", 
            "givenName": "Daniela", 
            "id": "sg:person.01012362050.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012362050.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zanna", 
            "givenName": "Ines", 
            "id": "sg:person.01111041627.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111041627.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saieva", 
            "givenName": "Calogero", 
            "id": "sg:person.0673106145.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673106145.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419555.9", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masala", 
            "givenName": "Giovanna", 
            "id": "sg:person.01215545050.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215545050.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/cdd.2011.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014018139", 
              "https://doi.org/10.1038/cdd.2011.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015726036", 
              "https://doi.org/10.1038/ncomms6303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-51475-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121959558", 
              "https://doi.org/10.1038/s41598-019-51475-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-015-0592-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053111201", 
              "https://doi.org/10.1186/s13058-015-0592-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025448148", 
              "https://doi.org/10.1186/1471-2105-11-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-29041-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105534040", 
              "https://doi.org/10.1038/s41598-018-29041-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007111735", 
              "https://doi.org/10.1186/bcr2340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-019-1174-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124664500", 
              "https://doi.org/10.1007/s12041-019-1174-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10552-019-01206-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120193634", 
              "https://doi.org/10.1007/s10552-019-01206-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-018-4482-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104089087", 
              "https://doi.org/10.1186/s12885-018-4482-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-010-1151-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032835823", 
              "https://doi.org/10.1007/s10549-010-1151-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-6-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035557760", 
              "https://doi.org/10.1186/gb-2012-13-6-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032275059", 
              "https://doi.org/10.1186/bcr426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047392734", 
              "https://doi.org/10.1186/1471-2105-13-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008926607428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001814314", 
              "https://doi.org/10.1023/a:1008926607428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-019-6120-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121096964", 
              "https://doi.org/10.1186/s12885-019-6120-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4573-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092633684", 
              "https://doi.org/10.1007/s10549-017-4573-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4274-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085200965", 
              "https://doi.org/10.1007/s10549-017-4274-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10689-015-9849-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013756834", 
              "https://doi.org/10.1007/s10689-015-9849-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026514032085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017942614", 
              "https://doi.org/10.1023/a:1026514032085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-018-1010-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083328", 
              "https://doi.org/10.1186/s13058-018-1010-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-06-08", 
        "datePublishedReg": "2021-06-08", 
        "description": "PurposeMammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition.MethodsWe analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III\u2013IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a \u201ccandidate pathways\u201d approach focusing on pre-defined inflammation-related pathways.ResultsIn EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The \u201capoptosis signalling\u201d was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women.ConclusionPre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10549-021-06273-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1092777", 
            "issn": [
              "0167-6806", 
              "1573-7217"
            ], 
            "name": "Breast Cancer Research and Treatment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "189"
          }
        ], 
        "keywords": [
          "breast density", 
          "pre-diagnostic blood samples", 
          "European Prospective Investigation", 
          "breast cancer risk", 
          "epigenome-wide association studies", 
          "mammographic breast density", 
          "inflammation-related pathways", 
          "pairs of women", 
          "case-only study", 
          "candidate pathways", 
          "Prospective Investigation", 
          "breast cancer", 
          "cancer risk", 
          "blood samples", 
          "cell apoptosis", 
          "women", 
          "Infinium MethylationEPIC BeadChip", 
          "DNA methylation patterns", 
          "cancer", 
          "methylation patterns", 
          "multiple testing", 
          "Illumina Infinium MethylationEPIC BeadChip", 
          "annotation clusters", 
          "MethylationEPIC BeadChip", 
          "novel clues", 
          "single CpG site", 
          "apoptosis signaling", 
          "pathway", 
          "association studies", 
          "CpG sites", 
          "statistical analysis", 
          "cohort", 
          "gene promoter", 
          "breast", 
          "MethodsWe", 
          "DNA methylation", 
          "study", 
          "risk", 
          "total", 
          "apoptosis", 
          "markers", 
          "nutrition", 
          "genes", 
          "regulation", 
          "signaling", 
          "patterns", 
          "DNA transcription", 
          "mechanism", 
          "DNA binding", 
          "testing", 
          "DMRs", 
          "protein", 
          "clues", 
          "binding", 
          "BC", 
          "methylation", 
          "transcription", 
          "promoter", 
          "BeadChip", 
          "transcription regulation", 
          "MBD", 
          "samples", 
          "sites", 
          "correction", 
          "investigation", 
          "analysis", 
          "sections", 
          "region", 
          "density", 
          "approach", 
          "clusters", 
          "pairs", 
          "PurposeMammographic breast density", 
          "low-MBD women", 
          "Florence section", 
          "low-MBD breasts", 
          "pre-defined inflammation-related pathways", 
          "ResultsIn EWAS", 
          "high-MBD women", 
          "only inflammation-related candidate pathway", 
          "inflammation-related candidate pathway", 
          "ConclusionPre-diagnostic methylation patterns", 
          "Pre-diagnostic DNA methylation patterns", 
          "EPIC-Florence cohort"
        ], 
        "name": "Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study in the EPIC-Florence cohort", 
        "pagination": "435-444", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138691076"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10549-021-06273-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34101077"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10549-021-06273-w", 
          "https://app.dimensions.ai/details/publication/pub.1138691076"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_892.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10549-021-06273-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-021-06273-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      22 PREDICATES      140 URIs      111 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10549-021-06273-w schema:about N05431d35d21f4b83931989c02f26c087
    2 N0c624a5183914e8aa660d0933e12cc52
    3 N4092dd3d6d0746a9ba897bf40f88de79
    4 N41e3982f7ad145388c7918d74b1dfe76
    5 N668fd0c6ad494d489f15982c9be77d9a
    6 Na98cb872249f477193b9edec32c44a84
    7 Nb604cf555d0c4c40a94338e94ed90583
    8 Nc364817918e244eeb56a9e2e47f41a82
    9 Nd060a604de534cc4bf92b032facba986
    10 anzsrc-for:11
    11 anzsrc-for:1112
    12 schema:author Naabbdf40cc15465f924a4b753b45ea0c
    13 schema:citation sg:pub.10.1007/s10549-010-1151-1
    14 sg:pub.10.1007/s10549-017-4274-9
    15 sg:pub.10.1007/s10549-017-4573-1
    16 sg:pub.10.1007/s10552-019-01206-x
    17 sg:pub.10.1007/s10689-015-9849-1
    18 sg:pub.10.1007/s12041-019-1174-2
    19 sg:pub.10.1023/a:1008926607428
    20 sg:pub.10.1023/a:1026514032085
    21 sg:pub.10.1038/cdd.2011.30
    22 sg:pub.10.1038/ncomms6303
    23 sg:pub.10.1038/s41598-018-29041-1
    24 sg:pub.10.1038/s41598-019-51475-4
    25 sg:pub.10.1186/1471-2105-11-587
    26 sg:pub.10.1186/1471-2105-13-86
    27 sg:pub.10.1186/bcr2340
    28 sg:pub.10.1186/bcr426
    29 sg:pub.10.1186/gb-2012-13-6-r44
    30 sg:pub.10.1186/s12885-018-4482-7
    31 sg:pub.10.1186/s12885-019-6120-4
    32 sg:pub.10.1186/s13058-015-0592-1
    33 sg:pub.10.1186/s13058-018-1010-2
    34 schema:datePublished 2021-06-08
    35 schema:datePublishedReg 2021-06-08
    36 schema:description PurposeMammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition.MethodsWe analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III–IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a “candidate pathways” approach focusing on pre-defined inflammation-related pathways.ResultsIn EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The “apoptosis signalling” was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women.ConclusionPre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC.
    37 schema:genre article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N78c771fac4584fc592e3372d5060444c
    41 Ne7b06877382649e4b55efd4534663d0e
    42 sg:journal.1092777
    43 schema:keywords BC
    44 BeadChip
    45 ConclusionPre-diagnostic methylation patterns
    46 CpG sites
    47 DMRs
    48 DNA binding
    49 DNA methylation
    50 DNA methylation patterns
    51 DNA transcription
    52 EPIC-Florence cohort
    53 European Prospective Investigation
    54 Florence section
    55 Illumina Infinium MethylationEPIC BeadChip
    56 Infinium MethylationEPIC BeadChip
    57 MBD
    58 MethodsWe
    59 MethylationEPIC BeadChip
    60 Pre-diagnostic DNA methylation patterns
    61 Prospective Investigation
    62 PurposeMammographic breast density
    63 ResultsIn EWAS
    64 analysis
    65 annotation clusters
    66 apoptosis
    67 apoptosis signaling
    68 approach
    69 association studies
    70 binding
    71 blood samples
    72 breast
    73 breast cancer
    74 breast cancer risk
    75 breast density
    76 cancer
    77 cancer risk
    78 candidate pathways
    79 case-only study
    80 cell apoptosis
    81 clues
    82 clusters
    83 cohort
    84 correction
    85 density
    86 epigenome-wide association studies
    87 gene promoter
    88 genes
    89 high-MBD women
    90 inflammation-related candidate pathway
    91 inflammation-related pathways
    92 investigation
    93 low-MBD breasts
    94 low-MBD women
    95 mammographic breast density
    96 markers
    97 mechanism
    98 methylation
    99 methylation patterns
    100 multiple testing
    101 novel clues
    102 nutrition
    103 only inflammation-related candidate pathway
    104 pairs
    105 pairs of women
    106 pathway
    107 patterns
    108 pre-defined inflammation-related pathways
    109 pre-diagnostic blood samples
    110 promoter
    111 protein
    112 region
    113 regulation
    114 risk
    115 samples
    116 sections
    117 signaling
    118 single CpG site
    119 sites
    120 statistical analysis
    121 study
    122 testing
    123 total
    124 transcription
    125 transcription regulation
    126 women
    127 schema:name Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study in the EPIC-Florence cohort
    128 schema:pagination 435-444
    129 schema:productId N1fdfcb0109374358b1f849b34677724c
    130 N6a59d53a8d704f01bd148fb766fa1d75
    131 N7ed83f9e6e604152921490eb3048270d
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138691076
    133 https://doi.org/10.1007/s10549-021-06273-w
    134 schema:sdDatePublished 2022-01-01T19:02
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher N8de081a497204a75829caf35b4a492a9
    137 schema:url https://doi.org/10.1007/s10549-021-06273-w
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N05431d35d21f4b83931989c02f26c087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name CpG Islands
    143 rdf:type schema:DefinedTerm
    144 N0c624a5183914e8aa660d0933e12cc52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Female
    146 rdf:type schema:DefinedTerm
    147 N1fdfcb0109374358b1f849b34677724c schema:name doi
    148 schema:value 10.1007/s10549-021-06273-w
    149 rdf:type schema:PropertyValue
    150 N4092dd3d6d0746a9ba897bf40f88de79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Breast
    152 rdf:type schema:DefinedTerm
    153 N41e3982f7ad145388c7918d74b1dfe76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name DNA Methylation
    155 rdf:type schema:DefinedTerm
    156 N56cac300c7634c4098f2d7812cddd3ac rdf:first sg:person.0622773500.08
    157 rdf:rest N6aea4280ac3449dc96a6d19915d3b9f9
    158 N600b132cf95d49c79fac54c075e1507b rdf:first sg:person.01111041627.17
    159 rdf:rest Nac888d706410432c916aca7a32cf7b8a
    160 N668fd0c6ad494d489f15982c9be77d9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Prospective Studies
    162 rdf:type schema:DefinedTerm
    163 N6a59d53a8d704f01bd148fb766fa1d75 schema:name dimensions_id
    164 schema:value pub.1138691076
    165 rdf:type schema:PropertyValue
    166 N6aea4280ac3449dc96a6d19915d3b9f9 rdf:first sg:person.01012362050.20
    167 rdf:rest N600b132cf95d49c79fac54c075e1507b
    168 N78c771fac4584fc592e3372d5060444c schema:volumeNumber 189
    169 rdf:type schema:PublicationVolume
    170 N7ed83f9e6e604152921490eb3048270d schema:name pubmed_id
    171 schema:value 34101077
    172 rdf:type schema:PropertyValue
    173 N87d023c0c1a24f7eb11907246a4988dd rdf:first sg:person.0713134342.95
    174 rdf:rest Ndf20f9635b274f0f9693b5043a339f28
    175 N8de081a497204a75829caf35b4a492a9 schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 N8fe18f376ebf49e7b94f9fb5ea80cac6 rdf:first sg:person.010014537677.09
    178 rdf:rest N9279a3cf8e9c4f139ce4e53b141d5ca5
    179 N9279a3cf8e9c4f139ce4e53b141d5ca5 rdf:first sg:person.0615025337.65
    180 rdf:rest N87d023c0c1a24f7eb11907246a4988dd
    181 Na98cb872249f477193b9edec32c44a84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Breast Density
    183 rdf:type schema:DefinedTerm
    184 Naabbdf40cc15465f924a4b753b45ea0c rdf:first sg:person.01161605365.07
    185 rdf:rest Ne9d8ff0f167241018ca689b702458906
    186 Nac888d706410432c916aca7a32cf7b8a rdf:first sg:person.0673106145.95
    187 rdf:rest Nb46f1c48e8974d98807583c12068210e
    188 Nb46f1c48e8974d98807583c12068210e rdf:first sg:person.01215545050.27
    189 rdf:rest rdf:nil
    190 Nb604cf555d0c4c40a94338e94ed90583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Breast Neoplasms
    192 rdf:type schema:DefinedTerm
    193 Nc364817918e244eeb56a9e2e47f41a82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Epigenesis, Genetic
    195 rdf:type schema:DefinedTerm
    196 Nd060a604de534cc4bf92b032facba986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Humans
    198 rdf:type schema:DefinedTerm
    199 Ndf20f9635b274f0f9693b5043a339f28 rdf:first sg:person.01032702170.15
    200 rdf:rest N56cac300c7634c4098f2d7812cddd3ac
    201 Ne7b06877382649e4b55efd4534663d0e schema:issueNumber 2
    202 rdf:type schema:PublicationIssue
    203 Ne9d8ff0f167241018ca689b702458906 rdf:first sg:person.01175672551.90
    204 rdf:rest N8fe18f376ebf49e7b94f9fb5ea80cac6
    205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Medical and Health Sciences
    207 rdf:type schema:DefinedTerm
    208 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    209 schema:name Oncology and Carcinogenesis
    210 rdf:type schema:DefinedTerm
    211 sg:journal.1092777 schema:issn 0167-6806
    212 1573-7217
    213 schema:name Breast Cancer Research and Treatment
    214 schema:publisher Springer Nature
    215 rdf:type schema:Periodical
    216 sg:person.010014537677.09 schema:affiliation grid-institutes:grid.419555.9
    217 schema:familyName Palli
    218 schema:givenName Domenico
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014537677.09
    220 rdf:type schema:Person
    221 sg:person.01012362050.20 schema:affiliation grid-institutes:grid.419555.9
    222 schema:familyName Ambrogetti
    223 schema:givenName Daniela
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012362050.20
    225 rdf:type schema:Person
    226 sg:person.01032702170.15 schema:affiliation grid-institutes:grid.7841.a
    227 schema:familyName Silvestri
    228 schema:givenName Valentina
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032702170.15
    230 rdf:type schema:Person
    231 sg:person.01111041627.17 schema:affiliation grid-institutes:grid.419555.9
    232 schema:familyName Zanna
    233 schema:givenName Ines
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111041627.17
    235 rdf:type schema:Person
    236 sg:person.01161605365.07 schema:affiliation grid-institutes:grid.419555.9
    237 schema:familyName Caini
    238 schema:givenName Saverio
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161605365.07
    240 rdf:type schema:Person
    241 sg:person.01175672551.90 schema:affiliation grid-institutes:grid.7445.2
    242 schema:familyName Fiorito
    243 schema:givenName Giovanni
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175672551.90
    245 rdf:type schema:Person
    246 sg:person.01215545050.27 schema:affiliation grid-institutes:grid.419555.9
    247 schema:familyName Masala
    248 schema:givenName Giovanna
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215545050.27
    250 rdf:type schema:Person
    251 sg:person.0615025337.65 schema:affiliation grid-institutes:grid.419555.9
    252 schema:familyName Bendinelli
    253 schema:givenName Benedetta
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615025337.65
    255 rdf:type schema:Person
    256 sg:person.0622773500.08 schema:affiliation grid-institutes:grid.7841.a
    257 schema:familyName Ottini
    258 schema:givenName Laura
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622773500.08
    260 rdf:type schema:Person
    261 sg:person.0673106145.95 schema:affiliation grid-institutes:grid.419555.9
    262 schema:familyName Saieva
    263 schema:givenName Calogero
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673106145.95
    265 rdf:type schema:Person
    266 sg:person.0713134342.95 schema:affiliation grid-institutes:grid.428948.b
    267 schema:familyName Polidoro
    268 schema:givenName Silvia
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713134342.95
    270 rdf:type schema:Person
    271 sg:pub.10.1007/s10549-010-1151-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835823
    272 https://doi.org/10.1007/s10549-010-1151-1
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s10549-017-4274-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085200965
    275 https://doi.org/10.1007/s10549-017-4274-9
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s10549-017-4573-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092633684
    278 https://doi.org/10.1007/s10549-017-4573-1
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s10552-019-01206-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1120193634
    281 https://doi.org/10.1007/s10552-019-01206-x
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s10689-015-9849-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013756834
    284 https://doi.org/10.1007/s10689-015-9849-1
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s12041-019-1174-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124664500
    287 https://doi.org/10.1007/s12041-019-1174-2
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1023/a:1008926607428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001814314
    290 https://doi.org/10.1023/a:1008926607428
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1023/a:1026514032085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017942614
    293 https://doi.org/10.1023/a:1026514032085
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/cdd.2011.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014018139
    296 https://doi.org/10.1038/cdd.2011.30
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ncomms6303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015726036
    299 https://doi.org/10.1038/ncomms6303
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/s41598-018-29041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105534040
    302 https://doi.org/10.1038/s41598-018-29041-1
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/s41598-019-51475-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121959558
    305 https://doi.org/10.1038/s41598-019-51475-4
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1186/1471-2105-11-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448148
    308 https://doi.org/10.1186/1471-2105-11-587
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/1471-2105-13-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047392734
    311 https://doi.org/10.1186/1471-2105-13-86
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1186/bcr2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007111735
    314 https://doi.org/10.1186/bcr2340
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/bcr426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032275059
    317 https://doi.org/10.1186/bcr426
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1186/gb-2012-13-6-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035557760
    320 https://doi.org/10.1186/gb-2012-13-6-r44
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1186/s12885-018-4482-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104089087
    323 https://doi.org/10.1186/s12885-018-4482-7
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1186/s12885-019-6120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121096964
    326 https://doi.org/10.1186/s12885-019-6120-4
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1186/s13058-015-0592-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053111201
    329 https://doi.org/10.1186/s13058-015-0592-1
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1186/s13058-018-1010-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106083328
    332 https://doi.org/10.1186/s13058-018-1010-2
    333 rdf:type schema:CreativeWork
    334 grid-institutes:grid.419555.9 schema:alternateName Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
    335 schema:name Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
    336 rdf:type schema:Organization
    337 grid-institutes:grid.428948.b schema:alternateName Italian Institute for Genomic Medicine (IIGM), Turin, Italy
    338 schema:name Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
    339 Italian Institute for Genomic Medicine (IIGM), Turin, Italy
    340 rdf:type schema:Organization
    341 grid-institutes:grid.7445.2 schema:alternateName Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
    342 schema:name Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
    343 Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
    344 rdf:type schema:Organization
    345 grid-institutes:grid.7841.a schema:alternateName Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
    346 schema:name Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...