Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-10-16

AUTHORS

Toshiaki Iwase, Takafumi Sangai, Hiroshi Fujimoto, Yuji Sawabe, Kazuyuki Matsushita, Kengo Nagashima, Yasunori Sato, Ayako Nakagawa, Takahito Masuda, Takeshi Nagashima, Masayuki Ohtsuka

ABSTRACT

PurposeRecent studies suggest that the quality and quantity of visceral adipose tissue (VAT) play significant roles in adipocyte function, and are related to insulin resistance. We tested the hypothesis that high amounts of upper VAT (aVAT) and low-quality VAT worsen treatment outcomes via altered insulin metabolism.MethodsCohort 1 included 106 women with breast cancer who were undergoing surgery. Homeostasis model assessment of insulin resistance (HOMA-R), insulin-like growth factor (IGF)-1, and IGF-binding protein 3 (IGFBP3) were measured before the initiation of treatment. aVAT was measured via computed tomography (CT). VAT quality was assessed using CT-determined Hounsfield units (VAT-HU). Associations between the variables investigated and VAT quality and quantity were analyzed. Cohort 2 included 271 patients who underwent chemotherapy. Associations between the variables investigated and survival outcomes after chemotherapy were analyzed via retrospective chart review.ResultsIn cohort 1, aVAT was significantly correlated with insulin and HOMA-R levels. As body mass index (BMI) class increased, mean IGF-1 increased and mean IGFBP3 decreased, but these trends were not statistically significant. In cohort 2, aVAT was significantly positively correlated with BMI. The patients in the third aVAT tertiles had significantly shorter distant disease-free survival (dDFS) after neoadjuvant chemotherapy setting. In multivariate analysis, aVAT and VAT-HU were significantly associated with shorter dDFS.ConclusionsHigh aVAT and low-quality VAT were associated with poor survival outcome, increased insulin levels, and insulin resistance. The present study suggests the importance of evaluating the quality and quantity of VAT when estimating insulin resistance and treatment outcomes. More... »

PAGES

435-443

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-019-05467-7

DOI

http://dx.doi.org/10.1007/s10549-019-05467-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121856837

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31620935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intra-Abdominal Fat", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Breast Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, 77030, Houston, TX, USA", 
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwase", 
        "givenName": "Toshiaki", 
        "id": "sg:person.01151153045.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151153045.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sangai", 
        "givenName": "Takafumi", 
        "id": "sg:person.01174707040.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174707040.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujimoto", 
        "givenName": "Hiroshi", 
        "id": "sg:person.01075212114.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075212114.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawabe", 
        "givenName": "Yuji", 
        "id": "sg:person.011512253224.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512253224.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsushita", 
        "givenName": "Kazuyuki", 
        "id": "sg:person.0721044227.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721044227.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagashima", 
        "givenName": "Kengo", 
        "id": "sg:person.0766741256.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766741256.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Yasunori", 
        "id": "sg:person.01007772323.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007772323.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakagawa", 
        "givenName": "Ayako", 
        "id": "sg:person.0610110545.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610110545.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masuda", 
        "givenName": "Takahito", 
        "id": "sg:person.01322623101.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322623101.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagashima", 
        "givenName": "Takeshi", 
        "id": "sg:person.01140027675.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140027675.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohtsuka", 
        "givenName": "Masayuki", 
        "id": "sg:person.0653527253.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653527253.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-015-3287-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004836396", 
          "https://doi.org/10.1007/s10549-015-3287-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986935", 
          "https://doi.org/10.1038/nrc2536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncpendmet0976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028938253", 
          "https://doi.org/10.1038/ncpendmet0976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1758-5996-3-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016962972", 
          "https://doi.org/10.1186/1758-5996-3-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-3918-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034457510", 
          "https://doi.org/10.1007/s10549-016-3918-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-10-16", 
    "datePublishedReg": "2019-10-16", 
    "description": "PurposeRecent studies suggest that the quality and quantity of visceral adipose tissue (VAT) play significant roles in adipocyte function, and are related to insulin resistance. We tested the hypothesis that high amounts of upper VAT (aVAT) and low-quality VAT worsen treatment outcomes via altered insulin metabolism.MethodsCohort 1 included 106 women with breast cancer who were undergoing surgery. Homeostasis model assessment of insulin resistance (HOMA-R), insulin-like growth factor (IGF)-1, and IGF-binding protein 3 (IGFBP3) were measured before the initiation of treatment. aVAT was measured via computed tomography (CT). VAT quality was assessed using CT-determined Hounsfield units (VAT-HU). Associations between the variables investigated and VAT quality and quantity were analyzed. Cohort 2 included 271 patients who underwent chemotherapy. Associations between the variables investigated and survival outcomes after chemotherapy were analyzed via retrospective chart review.ResultsIn cohort 1, aVAT was significantly correlated with insulin and HOMA-R levels. As body mass index (BMI) class increased, mean IGF-1 increased and mean IGFBP3 decreased, but these trends were not statistically significant. In cohort 2, aVAT was significantly positively correlated with BMI. The patients in the third aVAT tertiles had significantly shorter distant disease-free survival (dDFS) after neoadjuvant chemotherapy setting. In multivariate analysis, aVAT and VAT-HU were significantly associated with shorter dDFS.ConclusionsHigh aVAT and low-quality VAT were associated with poor survival outcome, increased insulin levels, and insulin resistance. The present study suggests the importance of evaluating the quality and quantity of VAT when estimating insulin resistance and treatment outcomes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10549-019-05467-7", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "179"
      }
    ], 
    "keywords": [
      "distant disease-free survival", 
      "IGF-binding protein-3", 
      "visceral adipose tissue", 
      "shorter distant disease-free survival", 
      "insulin resistance", 
      "survival outcomes", 
      "cohort 2", 
      "treatment outcomes", 
      "breast cancer", 
      "computed tomography", 
      "body mass index class", 
      "insulin-like growth factor", 
      "altered insulin metabolism", 
      "ResultsIn cohort 1", 
      "HOMA-R levels", 
      "mean IGF-1", 
      "neoadjuvant chemotherapy setting", 
      "retrospective chart review", 
      "disease-free survival", 
      "homeostasis model assessment", 
      "initiation of treatment", 
      "visceral fat tissue", 
      "poor survival outcomes", 
      "chemotherapy setting", 
      "VAT HU", 
      "chart review", 
      "insulin levels", 
      "insulin metabolism", 
      "PurposeRecent studies", 
      "cohort 1", 
      "IGF-1", 
      "adipose tissue", 
      "model assessment", 
      "adipocyte function", 
      "multivariate analysis", 
      "chemotherapy", 
      "protein 3", 
      "patients", 
      "fat tissue", 
      "growth factor", 
      "Hounsfield units", 
      "outcomes", 
      "cancer", 
      "present study", 
      "tissue", 
      "association", 
      "AVAT", 
      "tertile", 
      "BMI", 
      "surgery", 
      "index class", 
      "insulin", 
      "women", 
      "survival", 
      "tomography", 
      "resistance", 
      "treatment", 
      "levels", 
      "study", 
      "metabolism", 
      "review", 
      "quality", 
      "significant role", 
      "initiation", 
      "high amounts", 
      "setting", 
      "assessment", 
      "factors", 
      "variables", 
      "role", 
      "hypothesis", 
      "function", 
      "units", 
      "importance", 
      "analysis", 
      "trends", 
      "amount", 
      "quantity", 
      "class"
    ], 
    "name": "Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with breast cancer", 
    "pagination": "435-443", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121856837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-019-05467-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31620935"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-019-05467-7", 
      "https://app.dimensions.ai/details/publication/pub.1121856837"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_807.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10549-019-05467-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05467-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05467-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05467-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05467-7'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      128 URIs      114 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-019-05467-7 schema:about N0e4c026fa1dd47f2a6f833e097c81c21
2 N1071a1ad7eca4f4e901cdcd7dd66b9b6
3 N22e5b65701064799b6ce1f0d56c7b238
4 N2c74075746bf45e9b25bfcabb2af66cd
5 N4853f56f771f42949a145b64b898fce9
6 N4c269bd3319a42779e903b9d205d3ae9
7 N5d2d4a75a7e14710a7509e16d660b7d2
8 N726a865359e742508ecf0f91c2224ff7
9 N7cfaac9ae7904cd482650f6f0aaed8f5
10 N8db85150c3ce406c827ef8909d5d3032
11 N9b7039834dd746969d96ddb9f0a4f580
12 Na3098c95753f4dabb4d43dc74880156c
13 Nb673ce96df0747aba4d2c7330038ef85
14 Nbc504b396c35400991d73ea469982e41
15 Ncbf99d7ef61f45f4a56813ae4fe592ef
16 Ndb94c7dbbdf84ed8a824f2d056e93ccc
17 Ne35b57f48f5e454c9519c0c819fdbd89
18 Nf335db0803cf4fb594ffbd3eb0f80dcc
19 anzsrc-for:11
20 anzsrc-for:1103
21 anzsrc-for:1112
22 schema:author N66ca943aadb4414a865227739f4e38da
23 schema:citation sg:pub.10.1007/s10549-015-3287-5
24 sg:pub.10.1007/s10549-016-3918-5
25 sg:pub.10.1038/ncpendmet0976
26 sg:pub.10.1038/nrc2536
27 sg:pub.10.1186/1758-5996-3-12
28 schema:datePublished 2019-10-16
29 schema:datePublishedReg 2019-10-16
30 schema:description PurposeRecent studies suggest that the quality and quantity of visceral adipose tissue (VAT) play significant roles in adipocyte function, and are related to insulin resistance. We tested the hypothesis that high amounts of upper VAT (aVAT) and low-quality VAT worsen treatment outcomes via altered insulin metabolism.MethodsCohort 1 included 106 women with breast cancer who were undergoing surgery. Homeostasis model assessment of insulin resistance (HOMA-R), insulin-like growth factor (IGF)-1, and IGF-binding protein 3 (IGFBP3) were measured before the initiation of treatment. aVAT was measured via computed tomography (CT). VAT quality was assessed using CT-determined Hounsfield units (VAT-HU). Associations between the variables investigated and VAT quality and quantity were analyzed. Cohort 2 included 271 patients who underwent chemotherapy. Associations between the variables investigated and survival outcomes after chemotherapy were analyzed via retrospective chart review.ResultsIn cohort 1, aVAT was significantly correlated with insulin and HOMA-R levels. As body mass index (BMI) class increased, mean IGF-1 increased and mean IGFBP3 decreased, but these trends were not statistically significant. In cohort 2, aVAT was significantly positively correlated with BMI. The patients in the third aVAT tertiles had significantly shorter distant disease-free survival (dDFS) after neoadjuvant chemotherapy setting. In multivariate analysis, aVAT and VAT-HU were significantly associated with shorter dDFS.ConclusionsHigh aVAT and low-quality VAT were associated with poor survival outcome, increased insulin levels, and insulin resistance. The present study suggests the importance of evaluating the quality and quantity of VAT when estimating insulin resistance and treatment outcomes.
31 schema:genre article
32 schema:isAccessibleForFree false
33 schema:isPartOf N096f097aad624dd69426eb398f58824d
34 Nd225782a7b1944eea0ee9b0a0565e1c6
35 sg:journal.1092777
36 schema:keywords AVAT
37 BMI
38 HOMA-R levels
39 Hounsfield units
40 IGF-1
41 IGF-binding protein-3
42 PurposeRecent studies
43 ResultsIn cohort 1
44 VAT HU
45 adipocyte function
46 adipose tissue
47 altered insulin metabolism
48 amount
49 analysis
50 assessment
51 association
52 body mass index class
53 breast cancer
54 cancer
55 chart review
56 chemotherapy
57 chemotherapy setting
58 class
59 cohort 1
60 cohort 2
61 computed tomography
62 disease-free survival
63 distant disease-free survival
64 factors
65 fat tissue
66 function
67 growth factor
68 high amounts
69 homeostasis model assessment
70 hypothesis
71 importance
72 index class
73 initiation
74 initiation of treatment
75 insulin
76 insulin levels
77 insulin metabolism
78 insulin resistance
79 insulin-like growth factor
80 levels
81 mean IGF-1
82 metabolism
83 model assessment
84 multivariate analysis
85 neoadjuvant chemotherapy setting
86 outcomes
87 patients
88 poor survival outcomes
89 present study
90 protein 3
91 quality
92 quantity
93 resistance
94 retrospective chart review
95 review
96 role
97 setting
98 shorter distant disease-free survival
99 significant role
100 study
101 surgery
102 survival
103 survival outcomes
104 tertile
105 tissue
106 tomography
107 treatment
108 treatment outcomes
109 trends
110 units
111 variables
112 visceral adipose tissue
113 visceral fat tissue
114 women
115 schema:name Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with breast cancer
116 schema:pagination 435-443
117 schema:productId Naa8e982953a14f468fc652ddaf5fda19
118 Naf5e7e45dac34f8b916888f0e670a63f
119 Necaa4469251a4390b44b0808910c2af8
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121856837
121 https://doi.org/10.1007/s10549-019-05467-7
122 schema:sdDatePublished 2022-10-01T06:45
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher Nb3a88eaf6a464906b76d4c9074ee62eb
125 schema:url https://doi.org/10.1007/s10549-019-05467-7
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N096f097aad624dd69426eb398f58824d schema:volumeNumber 179
130 rdf:type schema:PublicationVolume
131 N0e4c026fa1dd47f2a6f833e097c81c21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Tomography, X-Ray Computed
133 rdf:type schema:DefinedTerm
134 N1071a1ad7eca4f4e901cdcd7dd66b9b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Prognosis
136 rdf:type schema:DefinedTerm
137 N22e5b65701064799b6ce1f0d56c7b238 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adult
139 rdf:type schema:DefinedTerm
140 N2c74075746bf45e9b25bfcabb2af66cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Aged, 80 and over
142 rdf:type schema:DefinedTerm
143 N4853f56f771f42949a145b64b898fce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Antineoplastic Combined Chemotherapy Protocols
145 rdf:type schema:DefinedTerm
146 N4bfb54fe43564b5c950e329011576312 rdf:first sg:person.01075212114.24
147 rdf:rest N76d5392c4168441e8b9ba94295c2946b
148 N4c269bd3319a42779e903b9d205d3ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 N5a8e9811beb6424ab589b453fae793c7 rdf:first sg:person.0653527253.30
152 rdf:rest rdf:nil
153 N5d2d4a75a7e14710a7509e16d660b7d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Insulin Resistance
155 rdf:type schema:DefinedTerm
156 N5f8118aee12a4e9c8a5c1e5b0f9c0d7a rdf:first sg:person.01007772323.23
157 rdf:rest Nba3175a83ff246c9abf9fa7aa777ec27
158 N66ca943aadb4414a865227739f4e38da rdf:first sg:person.01151153045.37
159 rdf:rest N969a74720cc5406289ac149777a3f12b
160 N726a865359e742508ecf0f91c2224ff7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Neoplasm Staging
162 rdf:type schema:DefinedTerm
163 N76d5392c4168441e8b9ba94295c2946b rdf:first sg:person.011512253224.16
164 rdf:rest N802ad8ab811d4a2b9b697c8105d0c089
165 N7cfaac9ae7904cd482650f6f0aaed8f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Middle Aged
167 rdf:type schema:DefinedTerm
168 N802ad8ab811d4a2b9b697c8105d0c089 rdf:first sg:person.0721044227.52
169 rdf:rest Nec5e26af73004f6a9e6fff9e62a7eb17
170 N8db85150c3ce406c827ef8909d5d3032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Aged
172 rdf:type schema:DefinedTerm
173 N969a74720cc5406289ac149777a3f12b rdf:first sg:person.01174707040.11
174 rdf:rest N4bfb54fe43564b5c950e329011576312
175 N9b7039834dd746969d96ddb9f0a4f580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Treatment Outcome
177 rdf:type schema:DefinedTerm
178 Na3098c95753f4dabb4d43dc74880156c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Breast Neoplasms
180 rdf:type schema:DefinedTerm
181 Naa8e982953a14f468fc652ddaf5fda19 schema:name dimensions_id
182 schema:value pub.1121856837
183 rdf:type schema:PropertyValue
184 Naf5e7e45dac34f8b916888f0e670a63f schema:name pubmed_id
185 schema:value 31620935
186 rdf:type schema:PropertyValue
187 Nb3a88eaf6a464906b76d4c9074ee62eb schema:name Springer Nature - SN SciGraph project
188 rdf:type schema:Organization
189 Nb489d0a4dac84e8784a652ee9d01e24f rdf:first sg:person.01140027675.04
190 rdf:rest N5a8e9811beb6424ab589b453fae793c7
191 Nb673ce96df0747aba4d2c7330038ef85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Biomarkers
193 rdf:type schema:DefinedTerm
194 Nba3175a83ff246c9abf9fa7aa777ec27 rdf:first sg:person.0610110545.30
195 rdf:rest Ne41519c7e99e4fd987723fe2fc088c8a
196 Nbc504b396c35400991d73ea469982e41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Male
198 rdf:type schema:DefinedTerm
199 Ncbf99d7ef61f45f4a56813ae4fe592ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Body Mass Index
201 rdf:type schema:DefinedTerm
202 Nd225782a7b1944eea0ee9b0a0565e1c6 schema:issueNumber 2
203 rdf:type schema:PublicationIssue
204 Ndb94c7dbbdf84ed8a824f2d056e93ccc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Intra-Abdominal Fat
206 rdf:type schema:DefinedTerm
207 Ne35b57f48f5e454c9519c0c819fdbd89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Proportional Hazards Models
209 rdf:type schema:DefinedTerm
210 Ne41519c7e99e4fd987723fe2fc088c8a rdf:first sg:person.01322623101.85
211 rdf:rest Nb489d0a4dac84e8784a652ee9d01e24f
212 Nec5e26af73004f6a9e6fff9e62a7eb17 rdf:first sg:person.0766741256.09
213 rdf:rest N5f8118aee12a4e9c8a5c1e5b0f9c0d7a
214 Necaa4469251a4390b44b0808910c2af8 schema:name doi
215 schema:value 10.1007/s10549-019-05467-7
216 rdf:type schema:PropertyValue
217 Nf335db0803cf4fb594ffbd3eb0f80dcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Humans
219 rdf:type schema:DefinedTerm
220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
221 schema:name Medical and Health Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
224 schema:name Clinical Sciences
225 rdf:type schema:DefinedTerm
226 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
227 schema:name Oncology and Carcinogenesis
228 rdf:type schema:DefinedTerm
229 sg:journal.1092777 schema:issn 0167-6806
230 1573-7217
231 schema:name Breast Cancer Research and Treatment
232 schema:publisher Springer Nature
233 rdf:type schema:Periodical
234 sg:person.01007772323.23 schema:affiliation grid-institutes:None
235 schema:familyName Sato
236 schema:givenName Yasunori
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007772323.23
238 rdf:type schema:Person
239 sg:person.01075212114.24 schema:affiliation grid-institutes:None
240 schema:familyName Fujimoto
241 schema:givenName Hiroshi
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075212114.24
243 rdf:type schema:Person
244 sg:person.01140027675.04 schema:affiliation grid-institutes:None
245 schema:familyName Nagashima
246 schema:givenName Takeshi
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140027675.04
248 rdf:type schema:Person
249 sg:person.01151153045.37 schema:affiliation grid-institutes:None
250 schema:familyName Iwase
251 schema:givenName Toshiaki
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151153045.37
253 rdf:type schema:Person
254 sg:person.011512253224.16 schema:affiliation grid-institutes:None
255 schema:familyName Sawabe
256 schema:givenName Yuji
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512253224.16
258 rdf:type schema:Person
259 sg:person.01174707040.11 schema:affiliation grid-institutes:None
260 schema:familyName Sangai
261 schema:givenName Takafumi
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174707040.11
263 rdf:type schema:Person
264 sg:person.01322623101.85 schema:affiliation grid-institutes:None
265 schema:familyName Masuda
266 schema:givenName Takahito
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322623101.85
268 rdf:type schema:Person
269 sg:person.0610110545.30 schema:affiliation grid-institutes:None
270 schema:familyName Nakagawa
271 schema:givenName Ayako
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610110545.30
273 rdf:type schema:Person
274 sg:person.0653527253.30 schema:affiliation grid-institutes:None
275 schema:familyName Ohtsuka
276 schema:givenName Masayuki
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653527253.30
278 rdf:type schema:Person
279 sg:person.0721044227.52 schema:affiliation grid-institutes:None
280 schema:familyName Matsushita
281 schema:givenName Kazuyuki
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721044227.52
283 rdf:type schema:Person
284 sg:person.0766741256.09 schema:affiliation grid-institutes:None
285 schema:familyName Nagashima
286 schema:givenName Kengo
287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766741256.09
288 rdf:type schema:Person
289 sg:pub.10.1007/s10549-015-3287-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004836396
290 https://doi.org/10.1007/s10549-015-3287-5
291 rdf:type schema:CreativeWork
292 sg:pub.10.1007/s10549-016-3918-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034457510
293 https://doi.org/10.1007/s10549-016-3918-5
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/ncpendmet0976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028938253
296 https://doi.org/10.1038/ncpendmet0976
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/nrc2536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050986935
299 https://doi.org/10.1038/nrc2536
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/1758-5996-3-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016962972
302 https://doi.org/10.1186/1758-5996-3-12
303 rdf:type schema:CreativeWork
304 grid-institutes:None schema:alternateName Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
305 Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
306 Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
307 schema:name Department of Breast Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, 77030, Houston, TX, USA
308 Department of General Surgery, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
309 Department of Global Clinical Research, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
310 Department of Laboratory Medicine, Chiba Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, 260-8677, Chiba, Japan
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...