Ki-67 (30-9) scoring and differentiation of Luminal A- and Luminal B-like breast cancer subtypes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-08-17

AUTHORS

Giuseppe Viale, Amy E. Hanlon Newell, Espen Walker, Greg Harlow, Isaac Bai, Leila Russo, Patrizia Dell’Orto, Patrick Maisonneuve

ABSTRACT

IntroductionKi-67 labeling index assessed by immunohistochemical assays has been shown useful in assessing the risk of recurrence for estrogen receptor (ER)-positive HER2-negative breast cancers (BC) and distinguishing Luminal A-like from Luminal B-like tumors. We aimed to assess the performance of the Ventana CONFIRM anti-Ki-67 (30-9) Rabbit Monoclonal Primary Antibody.MethodsWe constructed a case–cohort design based on a random sample (n = 679) of all patients operated on for a first primary, non-metastatic, ER-positive, HER2-negative BC at the European Institute of Oncology (IEO) Milan, Italy during 1998–2002 and all additional patients (n = 303) operated during the same period, who developed an event (metastasis in distant organs or death due to BC as primary event) and were not included in the previous subset. Multivariable Cox proportional hazards regression with inverse subcohort sampling probability weighting was used to evaluate the risk of event according to Ki-67 (30-9) and derived intrinsic molecular subtype, using previously defined cutoff values, i.e., respectively 14% and 20%.ResultsKi-67 was < 14% in 318 patients (32.4%), comprised between 14 and 19% in 245 patients (24.9%) and ≥ 20 in 419 patients (42.7%). At multivariable analysis, the risk of developing distant disease was 1.88 (95% CI 1.20–2.93; P = 0.006) for those with Ki-67 comprised between 14 and 19%, and 3.06 (95% CI 1.93–4.84; P < 0.0001) for those with Ki-67 ≥ 20% compared to those with Ki-67 < 14%. Patients with Luminal B-like BC had an approximate twofold risk of developing distant disease (HR = 1.91; 95% CI 1.35–2.71; P = 0.0003) than patients with Luminal A-like BC defined using Ki-67 (30-9).ConclusionsKi-67 evaluation using the 30-9 rabbit monoclonal primary antibody was able to stratify patients with ER-positive HER2-negative BC into prognostically distinct groups. Ki-67 assessment, with strict adherence to the international recommendations, should be included among the clinically useful biological parameters for the best treatment of patients with BC. More... »

PAGES

451-458

References to SciGraph publications

  • 2007-04-24. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients in BRITISH JOURNAL OF CANCER
  • 2017-09-19. Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3-04 MINDACT trial in BREAST CANCER RESEARCH AND TREATMENT
  • 2016-05-18. Analytical validation of a standardized scoring protocol for Ki67: phase 3 of an international multicenter collaboration in NPJ BREAST CANCER
  • 2014-06-20. Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes in BREAST CANCER RESEARCH
  • 2015-09-04. Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients in BREAST CANCER RESEARCH AND TREATMENT
  • 2018-02-26. Assessment of the predictive role of pretreatment Ki-67 and Ki-67 changes in breast cancer patients receiving neoadjuvant chemotherapy according to the molecular classification: a retrospective study of 1010 patients in BREAST CANCER RESEARCH AND TREATMENT
  • 2015-02-20. An international study to increase concordance in Ki67 scoring in MODERN PATHOLOGY
  • 2007-12-04. Case-cohort design in practice – experiences from the MORGAM Project in EPIDEMIOLOGIC PERSPECTIVES & INNOVATIONS
  • 2016-10-18. Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups in BREAST CANCER RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10549-019-05402-w

    DOI

    http://dx.doi.org/10.1007/s10549-019-05402-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1120390001

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31422497


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ki-67 Antigen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Grading", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Staging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proportional Hazards Models", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Milan, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy", 
                "University of Milan, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viale", 
            "givenName": "Giuseppe", 
            "id": "sg:person.012777104037.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777104037.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ventana Medical Systems, Inc., Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.418158.1", 
              "name": [
                "Ventana Medical Systems, Inc., Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanlon Newell", 
            "givenName": "Amy E.", 
            "id": "sg:person.0736122603.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736122603.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ventana Medical Systems, Inc., Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.418158.1", 
              "name": [
                "Ventana Medical Systems, Inc., Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walker", 
            "givenName": "Espen", 
            "id": "sg:person.07621261010.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07621261010.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ventana Medical Systems, Inc., Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.418158.1", 
              "name": [
                "Ventana Medical Systems, Inc., Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harlow", 
            "givenName": "Greg", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ventana Medical Systems, Inc., Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.418158.1", 
              "name": [
                "Ventana Medical Systems, Inc., Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bai", 
            "givenName": "Isaac", 
            "id": "sg:person.01121503366.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121503366.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.15667.33", 
              "name": [
                "Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russo", 
            "givenName": "Leila", 
            "id": "sg:person.01073242062.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073242062.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.15667.33", 
              "name": [
                "Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dell\u2019Orto", 
            "givenName": "Patrizia", 
            "id": "sg:person.01165733024.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165733024.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.15667.33", 
              "name": [
                "Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maisonneuve", 
            "givenName": "Patrick", 
            "id": "sg:person.01244740644.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244740644.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/bcr3679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026597061", 
              "https://doi.org/10.1186/bcr3679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-015-3559-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049793786", 
              "https://doi.org/10.1007/s10549-015-3559-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4509-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091862164", 
              "https://doi.org/10.1007/s10549-017-4509-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2015.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001793556", 
              "https://doi.org/10.1038/modpathol.2015.38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-018-4730-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101218863", 
              "https://doi.org/10.1007/s10549-018-4730-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-016-0765-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017590589", 
              "https://doi.org/10.1186/s13058-016-0765-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-5573-4-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024427429", 
              "https://doi.org/10.1186/1742-5573-4-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjbcancer.2016.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010212957", 
              "https://doi.org/10.1038/npjbcancer.2016.14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6603756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030523104", 
              "https://doi.org/10.1038/sj.bjc.6603756"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-08-17", 
        "datePublishedReg": "2019-08-17", 
        "description": "IntroductionKi-67 labeling index assessed by immunohistochemical assays has been shown useful in assessing the risk of recurrence for estrogen receptor (ER)-positive HER2-negative breast cancers (BC) and distinguishing Luminal A-like from Luminal B-like tumors. We aimed to assess the performance of the Ventana CONFIRM anti-Ki-67 (30-9) Rabbit Monoclonal Primary Antibody.MethodsWe constructed a case\u2013cohort design based on a random sample (n\u2009=\u2009679) of all patients operated on for a first primary, non-metastatic, ER-positive, HER2-negative BC at the European Institute of Oncology (IEO) Milan, Italy during 1998\u20132002 and all additional patients (n\u2009=\u2009303) operated during the same period, who developed an event (metastasis in distant organs or death due to BC as primary event) and were not included in the previous subset. Multivariable Cox proportional hazards regression with inverse subcohort sampling probability weighting was used to evaluate the risk of event according to Ki-67 (30-9) and derived intrinsic molecular subtype, using previously defined cutoff values, i.e., respectively 14% and 20%.ResultsKi-67 was\u2009<\u200914% in 318 patients (32.4%), comprised between 14 and 19% in 245 patients (24.9%) and\u2009\u2265\u200920 in 419 patients (42.7%). At multivariable analysis, the risk of developing distant disease was 1.88 (95% CI 1.20\u20132.93; P\u2009=\u20090.006) for those with Ki-67 comprised between 14 and 19%, and 3.06 (95% CI 1.93\u20134.84; P\u2009<\u20090.0001) for those with Ki-67\u2009\u2265\u200920% compared to those with Ki-67\u2009<\u200914%. Patients with Luminal B-like BC had an approximate twofold risk of developing distant disease (HR\u2009=\u20091.91; 95% CI 1.35\u20132.71; P\u2009=\u20090.0003) than patients with Luminal A-like BC defined using Ki-67 (30-9).ConclusionsKi-67 evaluation using the 30-9 rabbit monoclonal primary antibody was able to stratify patients with ER-positive HER2-negative BC into prognostically distinct groups. Ki-67 assessment, with strict adherence to the international recommendations, should be included among the clinically useful biological parameters for the best treatment of patients with BC.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10549-019-05402-w", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1092777", 
            "issn": [
              "0167-6806", 
              "1573-7217"
            ], 
            "name": "Breast Cancer Research and Treatment", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "178"
          }
        ], 
        "keywords": [
          "HER2-negative breast cancer", 
          "like breast cancer", 
          "breast cancer", 
          "Ki-67", 
          "distant disease", 
          "Luminal B", 
          "Luminal A", 
          "monoclonal primary antibody", 
          "multivariable Cox proportional hazards regression", 
          "like breast cancer subtype", 
          "Cox proportional hazards regression", 
          "Luminal A-like", 
          "ER-positive HER2", 
          "proportional hazards regression", 
          "risk of recurrence", 
          "intrinsic molecular subtypes", 
          "negative breast cancer", 
          "breast cancer subtypes", 
          "risk of events", 
          "Ki-67 assessment", 
          "Ki-67 scoring", 
          "primary antibody", 
          "case-cohort design", 
          "additional patients", 
          "multivariable analysis", 
          "twofold risk", 
          "hazards regression", 
          "estrogen receptor", 
          "like tumors", 
          "molecular subtypes", 
          "immunohistochemical assays", 
          "patients", 
          "labeling index", 
          "cutoff value", 
          "cancer subtypes", 
          "first primary", 
          "international recommendations", 
          "best treatment", 
          "strict adherence", 
          "risk", 
          "subtypes", 
          "random sample", 
          "disease", 
          "antibodies", 
          "same period", 
          "European Institute", 
          "probability weighting", 
          "recurrence", 
          "HER2", 
          "tumors", 
          "cancer", 
          "MethodsWe", 
          "receptors", 
          "adherence", 
          "A-like", 
          "treatment", 
          "biological parameters", 
          "distinct groups", 
          "events", 
          "assays", 
          "primary", 
          "scoring", 
          "regression", 
          "group", 
          "subset", 
          "differentiation", 
          "assessment", 
          "index", 
          "period", 
          "ER", 
          "recommendations", 
          "evaluation", 
          "Institute", 
          "Milan", 
          "previous subset", 
          "samples", 
          "Italy", 
          "analysis", 
          "values", 
          "weighting", 
          "parameters", 
          "design", 
          "performance", 
          "inverse"
        ], 
        "name": "Ki-67 (30-9) scoring and differentiation of Luminal A- and Luminal B-like breast cancer subtypes", 
        "pagination": "451-458", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1120390001"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10549-019-05402-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31422497"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10549-019-05402-w", 
          "https://app.dimensions.ai/details/publication/pub.1120390001"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_821.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10549-019-05402-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05402-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05402-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05402-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-019-05402-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    278 TRIPLES      21 PREDICATES      128 URIs      111 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10549-019-05402-w schema:about N1fc2137a4b9349e2a7d377425d8e0298
    2 N20cc3654f7dd4042bcc1bf993c58bdd9
    3 N7fc88f9fa05d4b21bf852aa4464ecfca
    4 Nb61132bff8d74ea7bf815c4c41bff190
    5 Nc05c83f1a5e64bf0b22cd0b0a4291fe1
    6 Nc5541d815b9d4c2cbecce894fc7f184e
    7 Nc644dcf3499b4de8844a3e07fd366055
    8 Nd2d0b53ecae441b8a3987406c9a923ea
    9 Ndb1328e72a5d4e3aaee1963435e570ab
    10 Nf9c6019a1ea545b6994d68c787844ae9
    11 anzsrc-for:11
    12 anzsrc-for:1112
    13 schema:author Nb14547a25e644f0c9134955add3697f2
    14 schema:citation sg:pub.10.1007/s10549-015-3559-0
    15 sg:pub.10.1007/s10549-017-4509-9
    16 sg:pub.10.1007/s10549-018-4730-1
    17 sg:pub.10.1038/modpathol.2015.38
    18 sg:pub.10.1038/npjbcancer.2016.14
    19 sg:pub.10.1038/sj.bjc.6603756
    20 sg:pub.10.1186/1742-5573-4-15
    21 sg:pub.10.1186/bcr3679
    22 sg:pub.10.1186/s13058-016-0765-6
    23 schema:datePublished 2019-08-17
    24 schema:datePublishedReg 2019-08-17
    25 schema:description IntroductionKi-67 labeling index assessed by immunohistochemical assays has been shown useful in assessing the risk of recurrence for estrogen receptor (ER)-positive HER2-negative breast cancers (BC) and distinguishing Luminal A-like from Luminal B-like tumors. We aimed to assess the performance of the Ventana CONFIRM anti-Ki-67 (30-9) Rabbit Monoclonal Primary Antibody.MethodsWe constructed a case–cohort design based on a random sample (n = 679) of all patients operated on for a first primary, non-metastatic, ER-positive, HER2-negative BC at the European Institute of Oncology (IEO) Milan, Italy during 1998–2002 and all additional patients (n = 303) operated during the same period, who developed an event (metastasis in distant organs or death due to BC as primary event) and were not included in the previous subset. Multivariable Cox proportional hazards regression with inverse subcohort sampling probability weighting was used to evaluate the risk of event according to Ki-67 (30-9) and derived intrinsic molecular subtype, using previously defined cutoff values, i.e., respectively 14% and 20%.ResultsKi-67 was < 14% in 318 patients (32.4%), comprised between 14 and 19% in 245 patients (24.9%) and ≥ 20 in 419 patients (42.7%). At multivariable analysis, the risk of developing distant disease was 1.88 (95% CI 1.20–2.93; P = 0.006) for those with Ki-67 comprised between 14 and 19%, and 3.06 (95% CI 1.93–4.84; P < 0.0001) for those with Ki-67 ≥ 20% compared to those with Ki-67 < 14%. Patients with Luminal B-like BC had an approximate twofold risk of developing distant disease (HR = 1.91; 95% CI 1.35–2.71; P = 0.0003) than patients with Luminal A-like BC defined using Ki-67 (30-9).ConclusionsKi-67 evaluation using the 30-9 rabbit monoclonal primary antibody was able to stratify patients with ER-positive HER2-negative BC into prognostically distinct groups. Ki-67 assessment, with strict adherence to the international recommendations, should be included among the clinically useful biological parameters for the best treatment of patients with BC.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N39a77d8705034d6b865102cb9a3763bb
    29 Nf7a283e8e2144ebe8381a4849b9b03bc
    30 sg:journal.1092777
    31 schema:keywords A-like
    32 Cox proportional hazards regression
    33 ER
    34 ER-positive HER2
    35 European Institute
    36 HER2
    37 HER2-negative breast cancer
    38 Institute
    39 Italy
    40 Ki-67
    41 Ki-67 assessment
    42 Ki-67 scoring
    43 Luminal A
    44 Luminal A-like
    45 Luminal B
    46 MethodsWe
    47 Milan
    48 additional patients
    49 adherence
    50 analysis
    51 antibodies
    52 assays
    53 assessment
    54 best treatment
    55 biological parameters
    56 breast cancer
    57 breast cancer subtypes
    58 cancer
    59 cancer subtypes
    60 case-cohort design
    61 cutoff value
    62 design
    63 differentiation
    64 disease
    65 distant disease
    66 distinct groups
    67 estrogen receptor
    68 evaluation
    69 events
    70 first primary
    71 group
    72 hazards regression
    73 immunohistochemical assays
    74 index
    75 international recommendations
    76 intrinsic molecular subtypes
    77 inverse
    78 labeling index
    79 like breast cancer
    80 like breast cancer subtype
    81 like tumors
    82 molecular subtypes
    83 monoclonal primary antibody
    84 multivariable Cox proportional hazards regression
    85 multivariable analysis
    86 negative breast cancer
    87 parameters
    88 patients
    89 performance
    90 period
    91 previous subset
    92 primary
    93 primary antibody
    94 probability weighting
    95 proportional hazards regression
    96 random sample
    97 receptors
    98 recommendations
    99 recurrence
    100 regression
    101 risk
    102 risk of events
    103 risk of recurrence
    104 same period
    105 samples
    106 scoring
    107 strict adherence
    108 subset
    109 subtypes
    110 treatment
    111 tumors
    112 twofold risk
    113 values
    114 weighting
    115 schema:name Ki-67 (30-9) scoring and differentiation of Luminal A- and Luminal B-like breast cancer subtypes
    116 schema:pagination 451-458
    117 schema:productId N45fd3e75b0f9487f84fdd1fe6146f692
    118 Nc7b85b2cc6964704b763b66ff63e7742
    119 Ndb242074378e4fdb9477fe28db71c011
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120390001
    121 https://doi.org/10.1007/s10549-019-05402-w
    122 schema:sdDatePublished 2022-12-01T06:39
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N06f29b2c6c88427bb2f9e27c77da3f91
    125 schema:url https://doi.org/10.1007/s10549-019-05402-w
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N032ca6db667b4e9187b7f9cdc7078131 rdf:first sg:person.01244740644.62
    130 rdf:rest rdf:nil
    131 N06f29b2c6c88427bb2f9e27c77da3f91 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N1fc1e91164a64dfaad91a98b47609873 schema:affiliation grid-institutes:grid.418158.1
    134 schema:familyName Harlow
    135 schema:givenName Greg
    136 rdf:type schema:Person
    137 N1fc2137a4b9349e2a7d377425d8e0298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Breast Neoplasms
    139 rdf:type schema:DefinedTerm
    140 N20cc3654f7dd4042bcc1bf993c58bdd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Cell Differentiation
    142 rdf:type schema:DefinedTerm
    143 N26c458afb4a64917b2dc9ff3e1720cad rdf:first sg:person.01073242062.18
    144 rdf:rest N3dd4efd0cc4e469388c37668742eb5c7
    145 N39a77d8705034d6b865102cb9a3763bb schema:issueNumber 2
    146 rdf:type schema:PublicationIssue
    147 N3c0b105d8fcb4c93b0e1a9c7d563ff2d rdf:first sg:person.0736122603.34
    148 rdf:rest Nb2ce15047a324a4492de777f9c597ac9
    149 N3dd4efd0cc4e469388c37668742eb5c7 rdf:first sg:person.01165733024.34
    150 rdf:rest N032ca6db667b4e9187b7f9cdc7078131
    151 N45fd3e75b0f9487f84fdd1fe6146f692 schema:name pubmed_id
    152 schema:value 31422497
    153 rdf:type schema:PropertyValue
    154 N55ba948ed3f44c89b6e3d46e98b16117 rdf:first sg:person.01121503366.29
    155 rdf:rest N26c458afb4a64917b2dc9ff3e1720cad
    156 N7acda9442f77456fa6fe39e70fa29998 rdf:first N1fc1e91164a64dfaad91a98b47609873
    157 rdf:rest N55ba948ed3f44c89b6e3d46e98b16117
    158 N7fc88f9fa05d4b21bf852aa4464ecfca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Humans
    160 rdf:type schema:DefinedTerm
    161 Nb14547a25e644f0c9134955add3697f2 rdf:first sg:person.012777104037.00
    162 rdf:rest N3c0b105d8fcb4c93b0e1a9c7d563ff2d
    163 Nb2ce15047a324a4492de777f9c597ac9 rdf:first sg:person.07621261010.37
    164 rdf:rest N7acda9442f77456fa6fe39e70fa29998
    165 Nb61132bff8d74ea7bf815c4c41bff190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Case-Control Studies
    167 rdf:type schema:DefinedTerm
    168 Nc05c83f1a5e64bf0b22cd0b0a4291fe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Proportional Hazards Models
    170 rdf:type schema:DefinedTerm
    171 Nc5541d815b9d4c2cbecce894fc7f184e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Neoplasm Staging
    173 rdf:type schema:DefinedTerm
    174 Nc644dcf3499b4de8844a3e07fd366055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Ki-67 Antigen
    176 rdf:type schema:DefinedTerm
    177 Nc7b85b2cc6964704b763b66ff63e7742 schema:name dimensions_id
    178 schema:value pub.1120390001
    179 rdf:type schema:PropertyValue
    180 Nd2d0b53ecae441b8a3987406c9a923ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Female
    182 rdf:type schema:DefinedTerm
    183 Ndb1328e72a5d4e3aaee1963435e570ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Biomarkers, Tumor
    185 rdf:type schema:DefinedTerm
    186 Ndb242074378e4fdb9477fe28db71c011 schema:name doi
    187 schema:value 10.1007/s10549-019-05402-w
    188 rdf:type schema:PropertyValue
    189 Nf7a283e8e2144ebe8381a4849b9b03bc schema:volumeNumber 178
    190 rdf:type schema:PublicationVolume
    191 Nf9c6019a1ea545b6994d68c787844ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Neoplasm Grading
    193 rdf:type schema:DefinedTerm
    194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Medical and Health Sciences
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Oncology and Carcinogenesis
    199 rdf:type schema:DefinedTerm
    200 sg:journal.1092777 schema:issn 0167-6806
    201 1573-7217
    202 schema:name Breast Cancer Research and Treatment
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.01073242062.18 schema:affiliation grid-institutes:grid.15667.33
    206 schema:familyName Russo
    207 schema:givenName Leila
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073242062.18
    209 rdf:type schema:Person
    210 sg:person.01121503366.29 schema:affiliation grid-institutes:grid.418158.1
    211 schema:familyName Bai
    212 schema:givenName Isaac
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121503366.29
    214 rdf:type schema:Person
    215 sg:person.01165733024.34 schema:affiliation grid-institutes:grid.15667.33
    216 schema:familyName Dell’Orto
    217 schema:givenName Patrizia
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165733024.34
    219 rdf:type schema:Person
    220 sg:person.01244740644.62 schema:affiliation grid-institutes:grid.15667.33
    221 schema:familyName Maisonneuve
    222 schema:givenName Patrick
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244740644.62
    224 rdf:type schema:Person
    225 sg:person.012777104037.00 schema:affiliation grid-institutes:grid.4708.b
    226 schema:familyName Viale
    227 schema:givenName Giuseppe
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777104037.00
    229 rdf:type schema:Person
    230 sg:person.0736122603.34 schema:affiliation grid-institutes:grid.418158.1
    231 schema:familyName Hanlon Newell
    232 schema:givenName Amy E.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736122603.34
    234 rdf:type schema:Person
    235 sg:person.07621261010.37 schema:affiliation grid-institutes:grid.418158.1
    236 schema:familyName Walker
    237 schema:givenName Espen
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07621261010.37
    239 rdf:type schema:Person
    240 sg:pub.10.1007/s10549-015-3559-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049793786
    241 https://doi.org/10.1007/s10549-015-3559-0
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s10549-017-4509-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862164
    244 https://doi.org/10.1007/s10549-017-4509-9
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s10549-018-4730-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101218863
    247 https://doi.org/10.1007/s10549-018-4730-1
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/modpathol.2015.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001793556
    250 https://doi.org/10.1038/modpathol.2015.38
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/npjbcancer.2016.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010212957
    253 https://doi.org/10.1038/npjbcancer.2016.14
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/sj.bjc.6603756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030523104
    256 https://doi.org/10.1038/sj.bjc.6603756
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1742-5573-4-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024427429
    259 https://doi.org/10.1186/1742-5573-4-15
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/bcr3679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026597061
    262 https://doi.org/10.1186/bcr3679
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/s13058-016-0765-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017590589
    265 https://doi.org/10.1186/s13058-016-0765-6
    266 rdf:type schema:CreativeWork
    267 grid-institutes:grid.15667.33 schema:alternateName Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
    268 Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy
    269 schema:name Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
    270 Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy
    271 rdf:type schema:Organization
    272 grid-institutes:grid.418158.1 schema:alternateName Ventana Medical Systems, Inc., Tucson, AZ, USA
    273 schema:name Ventana Medical Systems, Inc., Tucson, AZ, USA
    274 rdf:type schema:Organization
    275 grid-institutes:grid.4708.b schema:alternateName University of Milan, Milan, Italy
    276 schema:name Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
    277 University of Milan, Milan, Italy
    278 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...