Time to death in breast cancer patients as an indicator of treatment response View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Steven A. Narod, Vasily Giannakeas, Victoria Sopik

ABSTRACT

PURPOSE: To describe the mortality experience of women who die of breast cancer in the 20-year period post-diagnosis using various metrics, including annual mortality rates, Kaplan-Meier survival curves and time-to-death histograms. METHODS: We generated three visual representations of SEER-based and hospital-based breast cancer patient cohorts using three different metrics of mortality. RESULTS: The greatest impact of most prognostic factors was on the probability of latent metastases present after treatment, but for some factors the primary impact was on the time to death for those women with metastases. CONCLUSIONS: The use of time-to-death statistics to display mortality benefits for treated versus untreated women helps facilitate the distinction between treatments which increase the likelihood of cure and treatments that delay cancer growth. More... »

PAGES

659-669

References to SciGraph publications

  • 2009-05. Pattern of metastatic spread in triple-negative breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10549-018-4935-3

    DOI

    http://dx.doi.org/10.1007/s10549-018-4935-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106419866

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30168014


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Progression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Grading", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Estrogen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Toronto", 
              "id": "https://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Women\u2019s College Research Institute, Women\u2019s College Hospital, 76 Grenville Street, M5S 1B2, Toronto, ON, Canada", 
                "Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Narod", 
            "givenName": "Steven A.", 
            "id": "sg:person.014417366562.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417366562.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Women's College Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417199.3", 
              "name": [
                "Women\u2019s College Research Institute, Women\u2019s College Hospital, 76 Grenville Street, M5S 1B2, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giannakeas", 
            "givenName": "Vasily", 
            "id": "sg:person.01307005624.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307005624.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Women's College Hospital", 
              "id": "https://www.grid.ac/institutes/grid.417199.3", 
              "name": [
                "Women\u2019s College Research Institute, Women\u2019s College Hospital, 76 Grenville Street, M5S 1B2, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sopik", 
            "givenName": "Victoria", 
            "id": "sg:person.0665726644.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665726644.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0140-6736(05)66544-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001690029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(05)66544-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001690029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djh253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022892835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-008-0086-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034973823", 
              "https://doi.org/10.1007/s10549-008-0086-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-008-0086-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034973823", 
              "https://doi.org/10.1007/s10549-008-0086-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-8049(02)00486-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039190314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-8049(02)00486-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039190314"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "PURPOSE: To describe the mortality experience of women who die of breast cancer in the 20-year period post-diagnosis using various metrics, including annual mortality rates, Kaplan-Meier survival curves and time-to-death histograms.\nMETHODS: We generated three visual representations of SEER-based and hospital-based breast cancer patient cohorts using three different metrics of mortality.\nRESULTS: The greatest impact of most prognostic factors was on the probability of latent metastases present after treatment, but for some factors the primary impact was on the time to death for those women with metastases.\nCONCLUSIONS: The use of time-to-death statistics to display mortality benefits for treated versus untreated women helps facilitate the distinction between treatments which increase the likelihood of cure and treatments that delay cancer growth.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10549-018-4935-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1092777", 
            "issn": [
              "0167-6806", 
              "1573-7217"
            ], 
            "name": "Breast Cancer Research and Treatment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "172"
          }
        ], 
        "name": "Time to death in breast cancer patients as an indicator of treatment response", 
        "pagination": "659-669", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "be8d6f29b1802e05678e949787e839fdf7b3fe5393855649ba9d6e1d4cb6524e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30168014"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8111104"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10549-018-4935-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106419866"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10549-018-4935-3", 
          "https://app.dimensions.ai/details/publication/pub.1106419866"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60334_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10549-018-4935-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4935-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4935-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4935-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4935-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      40 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10549-018-4935-3 schema:about N04947da1e0794e1788a6916b1414f0b7
    2 N53c78e6e39cd4c5b9c642569955b0108
    3 N695a967441b34ecd824f87fc58c59d64
    4 Nb44d84f51d5f4e8db2697bc44951ed71
    5 Nc9a33fc781a046f2a282124109ae30d7
    6 Ncb89828f211b45f2948f6d00339ebeeb
    7 Ne5a067c4c6fd467a8ef4b6630e4700c3
    8 anzsrc-for:11
    9 anzsrc-for:1112
    10 schema:author N70cdcd788ffe41d98e87aa3092cae165
    11 schema:citation sg:pub.10.1007/s10549-008-0086-2
    12 https://doi.org/10.1016/s0140-6736(05)66544-0
    13 https://doi.org/10.1016/s0959-8049(02)00486-0
    14 https://doi.org/10.1093/jnci/djh253
    15 schema:datePublished 2018-12
    16 schema:datePublishedReg 2018-12-01
    17 schema:description PURPOSE: To describe the mortality experience of women who die of breast cancer in the 20-year period post-diagnosis using various metrics, including annual mortality rates, Kaplan-Meier survival curves and time-to-death histograms. METHODS: We generated three visual representations of SEER-based and hospital-based breast cancer patient cohorts using three different metrics of mortality. RESULTS: The greatest impact of most prognostic factors was on the probability of latent metastases present after treatment, but for some factors the primary impact was on the time to death for those women with metastases. CONCLUSIONS: The use of time-to-death statistics to display mortality benefits for treated versus untreated women helps facilitate the distinction between treatments which increase the likelihood of cure and treatments that delay cancer growth.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N386140fa92034c1180c6ae8d732aa0fc
    22 N45ca227442e0455d8836ccf82e3b7395
    23 sg:journal.1092777
    24 schema:name Time to death in breast cancer patients as an indicator of treatment response
    25 schema:pagination 659-669
    26 schema:productId N1a33a1c2c71e4fdf8d67b0069098753f
    27 N84058d55bc6b4c3289348ee21e18d110
    28 Nad3d83a1677b4f4ca2714c5cb5f1e4f3
    29 Nd4571938e4e043538572776693f79bb4
    30 Nd6c1e7f257aa45fb9ae4e63c38f9d1ba
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106419866
    32 https://doi.org/10.1007/s10549-018-4935-3
    33 schema:sdDatePublished 2019-04-11T10:58
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Ne85169e0f15e41baac455b59c276378d
    36 schema:url https://link.springer.com/10.1007%2Fs10549-018-4935-3
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0302c72f879b478c8673d7dda9b7c76e rdf:first sg:person.01307005624.25
    41 rdf:rest N9583292e98e64cd3bbf2d1ff854663eb
    42 N04947da1e0794e1788a6916b1414f0b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    43 schema:name Neoplasm Grading
    44 rdf:type schema:DefinedTerm
    45 N1a33a1c2c71e4fdf8d67b0069098753f schema:name pubmed_id
    46 schema:value 30168014
    47 rdf:type schema:PropertyValue
    48 N386140fa92034c1180c6ae8d732aa0fc schema:issueNumber 3
    49 rdf:type schema:PublicationIssue
    50 N45ca227442e0455d8836ccf82e3b7395 schema:volumeNumber 172
    51 rdf:type schema:PublicationVolume
    52 N53c78e6e39cd4c5b9c642569955b0108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    53 schema:name Receptors, Estrogen
    54 rdf:type schema:DefinedTerm
    55 N695a967441b34ecd824f87fc58c59d64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    56 schema:name Disease Progression
    57 rdf:type schema:DefinedTerm
    58 N70cdcd788ffe41d98e87aa3092cae165 rdf:first sg:person.014417366562.02
    59 rdf:rest N0302c72f879b478c8673d7dda9b7c76e
    60 N84058d55bc6b4c3289348ee21e18d110 schema:name doi
    61 schema:value 10.1007/s10549-018-4935-3
    62 rdf:type schema:PropertyValue
    63 N9583292e98e64cd3bbf2d1ff854663eb rdf:first sg:person.0665726644.16
    64 rdf:rest rdf:nil
    65 Nad3d83a1677b4f4ca2714c5cb5f1e4f3 schema:name nlm_unique_id
    66 schema:value 8111104
    67 rdf:type schema:PropertyValue
    68 Nb44d84f51d5f4e8db2697bc44951ed71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Time Factors
    70 rdf:type schema:DefinedTerm
    71 Nc9a33fc781a046f2a282124109ae30d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Breast Neoplasms
    73 rdf:type schema:DefinedTerm
    74 Ncb89828f211b45f2948f6d00339ebeeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Female
    76 rdf:type schema:DefinedTerm
    77 Nd4571938e4e043538572776693f79bb4 schema:name readcube_id
    78 schema:value be8d6f29b1802e05678e949787e839fdf7b3fe5393855649ba9d6e1d4cb6524e
    79 rdf:type schema:PropertyValue
    80 Nd6c1e7f257aa45fb9ae4e63c38f9d1ba schema:name dimensions_id
    81 schema:value pub.1106419866
    82 rdf:type schema:PropertyValue
    83 Ne5a067c4c6fd467a8ef4b6630e4700c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Humans
    85 rdf:type schema:DefinedTerm
    86 Ne85169e0f15e41baac455b59c276378d schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Medical and Health Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Oncology and Carcinogenesis
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1092777 schema:issn 0167-6806
    95 1573-7217
    96 schema:name Breast Cancer Research and Treatment
    97 rdf:type schema:Periodical
    98 sg:person.01307005624.25 schema:affiliation https://www.grid.ac/institutes/grid.417199.3
    99 schema:familyName Giannakeas
    100 schema:givenName Vasily
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307005624.25
    102 rdf:type schema:Person
    103 sg:person.014417366562.02 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
    104 schema:familyName Narod
    105 schema:givenName Steven A.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417366562.02
    107 rdf:type schema:Person
    108 sg:person.0665726644.16 schema:affiliation https://www.grid.ac/institutes/grid.417199.3
    109 schema:familyName Sopik
    110 schema:givenName Victoria
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665726644.16
    112 rdf:type schema:Person
    113 sg:pub.10.1007/s10549-008-0086-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034973823
    114 https://doi.org/10.1007/s10549-008-0086-2
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0140-6736(05)66544-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001690029
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0959-8049(02)00486-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039190314
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1093/jnci/djh253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022892835
    121 rdf:type schema:CreativeWork
    122 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
    123 schema:name Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
    124 Women’s College Research Institute, Women’s College Hospital, 76 Grenville Street, M5S 1B2, Toronto, ON, Canada
    125 rdf:type schema:Organization
    126 https://www.grid.ac/institutes/grid.417199.3 schema:alternateName Women's College Hospital
    127 schema:name Women’s College Research Institute, Women’s College Hospital, 76 Grenville Street, M5S 1B2, Toronto, ON, Canada
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...