A comprehensive tool for measuring mammographic density changes over time View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Mikael Eriksson, Jingmei Li, Karin Leifland, Kamila Czene, Per Hall

ABSTRACT

BACKGROUND: Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. METHOD: Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. RESULTS: The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p < 0.001. CONCLUSIONS: The quality of STRATUS density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up. More... »

PAGES

371-379

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-018-4690-5

DOI

http://dx.doi.org/10.1007/s10549-018-4690-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100737045

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29392583


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels v\u00e4g 12A, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eriksson", 
        "givenName": "Mikael", 
        "id": "sg:person.015476537162.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476537162.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels v\u00e4g 12A, 171 77, Stockholm, Sweden", 
            "Human Genetics, Genome Institute of Singapore, Singapore, Singapore", 
            "Department of Surgery, National University of Singapore, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jingmei", 
        "id": "sg:person.013760043547.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, South General Hospital, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leifland", 
        "givenName": "Karin", 
        "id": "sg:person.0625166437.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625166437.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels v\u00e4g 12A, 171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czene", 
        "givenName": "Kamila", 
        "id": "sg:person.013117404317.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117404317.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels v\u00e4g 12A, 171 77, Stockholm, Sweden", 
            "Department of Oncology, South General Hospital, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "Per", 
        "id": "sg:person.01010701573.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010701573.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.11110506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004053339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kws446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006458287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kws446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006458287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829229", 
          "https://doi.org/10.1186/bcr3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr3238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006829229", 
          "https://doi.org/10.1186/bcr3238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/dju425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008686348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cej.0000000000000130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011651961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cej.0000000000000130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011651961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/cej.0000000000000130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011651961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-016-0787-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015414942", 
          "https://doi.org/10.1186/s13058-016-0787-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-016-0787-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015414942", 
          "https://doi.org/10.1186/s13058-016-0787-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.18.6.9821201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024214445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2012.44.5015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031534120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tranon.2015.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039274990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djr079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040220198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-09-0074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047934425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12282-015-0647-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053240122", 
          "https://doi.org/10.1007/s12282-015-0647-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/10666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059346793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/6.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059418162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxu024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059424657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyw357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059676914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/87.9.670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059819855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.650848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0111030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062837892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-16-0499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063224432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/096228099673819272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.72.855.10396212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064566774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1412408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069477216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-017-0820-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252017", 
          "https://doi.org/10.1186/s13058-017-0820-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13058-017-0820-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252017", 
          "https://doi.org/10.1186/s13058-017-0820-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/diagnostics7020030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085721672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22237/jmasm/1257034080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087304537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "BACKGROUND: Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time.\nMETHOD: Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment.\nRESULTS: The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p\u00a0<\u00a00.001.\nCONCLUSIONS: The quality of STRATUS density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-018-4690-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "169"
      }
    ], 
    "name": "A comprehensive tool for measuring mammographic density changes over time", 
    "pagination": "371-379", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15a0d8671fb9fb6388a442f55f01ae43058d5455ce3bb612772d0fa1c33145c9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29392583"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-018-4690-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100737045"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-018-4690-5", 
      "https://app.dimensions.ai/details/publication/pub.1100737045"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113664_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10549-018-4690-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4690-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4690-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4690-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-018-4690-5'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      67 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-018-4690-5 schema:about N273c7427b7c240f498d319e3ad7459b6
2 N371c7773dbeb407a887a12c8c5a56fde
3 N3dc5177254e048f99799221d670d6184
4 N5a4af2256afd49d4a57995838d70e864
5 N7b656651bf6a49b58e162ce1d978abbc
6 Nafc1ba509a8b47aab96240ae9541ca26
7 Nc95d7ecf135e4ca4988c26dc8285e9dc
8 Ne7245a4256f34b9bb0e9685a2a537c0a
9 Nf56aca30c2454cbd8c48a9564f641b9e
10 Nf94ea41cb09c48c7af59680cfa7793a2
11 Nfa1b4c7cc88740f79f3d6416a11ff995
12 anzsrc-for:08
13 anzsrc-for:0801
14 schema:author Nec63cc7bf9b7426eb5dae8e0291db371
15 schema:citation sg:pub.10.1007/s12282-015-0647-2
16 sg:pub.10.1186/bcr3238
17 sg:pub.10.1186/s13058-016-0787-0
18 sg:pub.10.1186/s13058-017-0820-y
19 https://doi.org/10.1016/j.tranon.2015.10.002
20 https://doi.org/10.1090/qam/10666
21 https://doi.org/10.1093/aje/kws446
22 https://doi.org/10.1093/biomet/6.1.1
23 https://doi.org/10.1093/biostatistics/kxu024
24 https://doi.org/10.1093/ije/dyw357
25 https://doi.org/10.1093/jnci/87.9.670
26 https://doi.org/10.1093/jnci/djr079
27 https://doi.org/10.1093/jnci/dju425
28 https://doi.org/10.1097/cej.0000000000000130
29 https://doi.org/10.1109/83.650848
30 https://doi.org/10.1137/0111030
31 https://doi.org/10.1148/radiographics.18.6.9821201
32 https://doi.org/10.1148/radiol.11110506
33 https://doi.org/10.1158/1055-9965.epi-09-0074
34 https://doi.org/10.1158/1055-9965.epi-16-0499
35 https://doi.org/10.1177/096228029900800204
36 https://doi.org/10.1191/096228099673819272
37 https://doi.org/10.1200/jco.2012.44.5015
38 https://doi.org/10.1259/bjr.72.855.10396212
39 https://doi.org/10.22237/jmasm/1257034080
40 https://doi.org/10.2307/1412408
41 https://doi.org/10.3390/diagnostics7020030
42 schema:datePublished 2018-06
43 schema:datePublishedReg 2018-06-01
44 schema:description BACKGROUND: Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. METHOD: Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. RESULTS: The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p < 0.001. CONCLUSIONS: The quality of STRATUS density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N1e96e0a7e89f447f81790288cdb5c5ad
49 N75c08b04a336463faab893b038256de3
50 sg:journal.1092777
51 schema:name A comprehensive tool for measuring mammographic density changes over time
52 schema:pagination 371-379
53 schema:productId N19f0a327682f4465b9501968fc9be953
54 N415ca37aa9e0448888247d3fd82f54b9
55 N4f027455d3ca45bc844fd2f58bad8bb4
56 N5fd52e142b6841708dc670944c881870
57 Nd0cdcd079d944ce595f195547eb4fb91
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100737045
59 https://doi.org/10.1007/s10549-018-4690-5
60 schema:sdDatePublished 2019-04-11T10:34
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N3a6973ff3bf34ceba736153b7280ff85
63 schema:url https://link.springer.com/10.1007%2Fs10549-018-4690-5
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N19f0a327682f4465b9501968fc9be953 schema:name dimensions_id
68 schema:value pub.1100737045
69 rdf:type schema:PropertyValue
70 N1e96e0a7e89f447f81790288cdb5c5ad schema:volumeNumber 169
71 rdf:type schema:PublicationVolume
72 N273c7427b7c240f498d319e3ad7459b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Image Processing, Computer-Assisted
74 rdf:type schema:DefinedTerm
75 N371c7773dbeb407a887a12c8c5a56fde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Aged
77 rdf:type schema:DefinedTerm
78 N3a6973ff3bf34ceba736153b7280ff85 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N3dc5177254e048f99799221d670d6184 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Risk Factors
82 rdf:type schema:DefinedTerm
83 N3e43acdfbd1d4927bc8d62a441723b63 rdf:first sg:person.0625166437.47
84 rdf:rest Naa97150b4c914a11bb9c87e869b33562
85 N415ca37aa9e0448888247d3fd82f54b9 schema:name nlm_unique_id
86 schema:value 8111104
87 rdf:type schema:PropertyValue
88 N4f027455d3ca45bc844fd2f58bad8bb4 schema:name pubmed_id
89 schema:value 29392583
90 rdf:type schema:PropertyValue
91 N5a4af2256afd49d4a57995838d70e864 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Software
93 rdf:type schema:DefinedTerm
94 N5fd52e142b6841708dc670944c881870 schema:name readcube_id
95 schema:value 15a0d8671fb9fb6388a442f55f01ae43058d5455ce3bb612772d0fa1c33145c9
96 rdf:type schema:PropertyValue
97 N75c08b04a336463faab893b038256de3 schema:issueNumber 2
98 rdf:type schema:PublicationIssue
99 N7b656651bf6a49b58e162ce1d978abbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Female
101 rdf:type schema:DefinedTerm
102 Naa97150b4c914a11bb9c87e869b33562 rdf:first sg:person.013117404317.63
103 rdf:rest Nf855dfb29b2442cb88faa43eee6df9be
104 Nafc1ba509a8b47aab96240ae9541ca26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 Nb6b62e28559b449099d3870715fada38 rdf:first sg:person.013760043547.76
108 rdf:rest N3e43acdfbd1d4927bc8d62a441723b63
109 Nc95d7ecf135e4ca4988c26dc8285e9dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Breast
111 rdf:type schema:DefinedTerm
112 Nd0cdcd079d944ce595f195547eb4fb91 schema:name doi
113 schema:value 10.1007/s10549-018-4690-5
114 rdf:type schema:PropertyValue
115 Ne482c64a5f0d427bb7ad08a057d0b6d0 schema:name Department of Radiology, South General Hospital, Stockholm, Sweden
116 rdf:type schema:Organization
117 Ne7245a4256f34b9bb0e9685a2a537c0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Breast Density
119 rdf:type schema:DefinedTerm
120 Nec63cc7bf9b7426eb5dae8e0291db371 rdf:first sg:person.015476537162.34
121 rdf:rest Nb6b62e28559b449099d3870715fada38
122 Nf56aca30c2454cbd8c48a9564f641b9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Middle Aged
124 rdf:type schema:DefinedTerm
125 Nf855dfb29b2442cb88faa43eee6df9be rdf:first sg:person.01010701573.25
126 rdf:rest rdf:nil
127 Nf94ea41cb09c48c7af59680cfa7793a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Breast Neoplasms
129 rdf:type schema:DefinedTerm
130 Nfa1b4c7cc88740f79f3d6416a11ff995 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Mammography
132 rdf:type schema:DefinedTerm
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
137 schema:name Artificial Intelligence and Image Processing
138 rdf:type schema:DefinedTerm
139 sg:journal.1092777 schema:issn 0167-6806
140 1573-7217
141 schema:name Breast Cancer Research and Treatment
142 rdf:type schema:Periodical
143 sg:person.01010701573.25 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
144 schema:familyName Hall
145 schema:givenName Per
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010701573.25
147 rdf:type schema:Person
148 sg:person.013117404317.63 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
149 schema:familyName Czene
150 schema:givenName Kamila
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117404317.63
152 rdf:type schema:Person
153 sg:person.013760043547.76 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
154 schema:familyName Li
155 schema:givenName Jingmei
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013760043547.76
157 rdf:type schema:Person
158 sg:person.015476537162.34 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
159 schema:familyName Eriksson
160 schema:givenName Mikael
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015476537162.34
162 rdf:type schema:Person
163 sg:person.0625166437.47 schema:affiliation Ne482c64a5f0d427bb7ad08a057d0b6d0
164 schema:familyName Leifland
165 schema:givenName Karin
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625166437.47
167 rdf:type schema:Person
168 sg:pub.10.1007/s12282-015-0647-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240122
169 https://doi.org/10.1007/s12282-015-0647-2
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/bcr3238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006829229
172 https://doi.org/10.1186/bcr3238
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/s13058-016-0787-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015414942
175 https://doi.org/10.1186/s13058-016-0787-0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/s13058-017-0820-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252017
178 https://doi.org/10.1186/s13058-017-0820-y
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.tranon.2015.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039274990
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1090/qam/10666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059346793
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/aje/kws446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006458287
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/biomet/6.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418162
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/biostatistics/kxu024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424657
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/ije/dyw357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059676914
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/jnci/87.9.670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059819855
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/jnci/djr079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040220198
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/jnci/dju425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008686348
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/cej.0000000000000130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011651961
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/83.650848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239679
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1137/0111030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062837892
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiographics.18.6.9821201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024214445
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiol.11110506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004053339
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1158/1055-9965.epi-09-0074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047934425
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1158/1055-9965.epi-16-0499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063224432
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1177/096228029900800204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090525344
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1191/096228099673819272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155357
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1200/jco.2012.44.5015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031534120
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1259/bjr.72.855.10396212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566774
219 rdf:type schema:CreativeWork
220 https://doi.org/10.22237/jmasm/1257034080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087304537
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2307/1412408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069477216
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3390/diagnostics7020030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085721672
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
227 schema:name Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Stockholm, Sweden
228 Department of Surgery, National University of Singapore, Singapore, Singapore
229 Human Genetics, Genome Institute of Singapore, Singapore, Singapore
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
232 schema:name Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Stockholm, Sweden
233 Department of Oncology, South General Hospital, Stockholm, Sweden
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...