NanoString-based breast cancer risk prediction for women with sclerosing adenosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Stacey J. Winham, Christine Mehner, Ethan P. Heinzen, Brendan T. Broderick, Melody Stallings-Mann, Aziza Nassar, Robert A. Vierkant, Tanya L. Hoskin, Ryan D. Frank, Chen Wang, Lori A. Denison, Celine M. Vachon, Marlene H. Frost, Lynn C. Hartmann, E. Aubrey Thompson, Mark E. Sherman, Daniel W. Visscher, Amy C. Degnim, Derek C. Radisky

ABSTRACT

PURPOSE: Sclerosing adenosis (SA), found in ¼ of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA. METHODS: The study group consisted of 151 women diagnosed with SA between 1967 and 2001 within the Mayo BBD cohort, of which 37 subsequently developed cancer within 10 years (cases) and 114 did not (controls). RNA was isolated from benign breast biopsies, and NanoString-based methods were used to assess expression levels of 61 genes, including 35 identified by previous array-based profiling experiments and 26 from biological insight. Diagonal linear discriminant analysis of these data was used to predict cancer within 10 years. Predictive performance was assessed with receiver operating characteristic area under the curve (ROC-AUC) values estimated from 5-fold cross-validation. RESULTS: Gene expression prediction models achieved cross-validated ROC-AUC estimates ranging from 0.66 to 0.70. Performing univariate associations within each of the five folds consistently identified genes DLK2, EXOC6, KIT, RGS12, and SORBS2 as significant; a model with only these five genes showed cross-validated ROC-AUC of 0.75, which compared favorably to risk prediction using established clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67). CONCLUSIONS: Our results demonstrate that biomarkers of breast cancer risk can be detected in benign breast tissue years prior to cancer development in women with SA. These markers can be assessed using assay methods optimized for RNA derived from FFPE biopsy tissues which are commonly available. More... »

PAGES

641-650

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z

DOI

http://dx.doi.org/10.1007/s10549-017-4441-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091146642

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28798985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrocystic Breast Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winham", 
        "givenName": "Stacey J.", 
        "id": "sg:person.01145766133.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145766133.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehner", 
        "givenName": "Christine", 
        "id": "sg:person.0747217726.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747217726.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinzen", 
        "givenName": "Ethan P.", 
        "id": "sg:person.010602020633.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602020633.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broderick", 
        "givenName": "Brendan T.", 
        "id": "sg:person.016426045053.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426045053.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stallings-Mann", 
        "givenName": "Melody", 
        "id": "sg:person.0717216366.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717216366.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nassar", 
        "givenName": "Aziza", 
        "id": "sg:person.01216233666.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216233666.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vierkant", 
        "givenName": "Robert A.", 
        "id": "sg:person.01316607713.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316607713.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoskin", 
        "givenName": "Tanya L.", 
        "id": "sg:person.01234406572.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234406572.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frank", 
        "givenName": "Ryan D.", 
        "id": "sg:person.0707176746.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707176746.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chen", 
        "id": "sg:person.01122406007.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122406007.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Information Technology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denison", 
        "givenName": "Lori A.", 
        "id": "sg:person.01003553717.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003553717.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vachon", 
        "givenName": "Celine M.", 
        "id": "sg:person.01117141733.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117141733.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Medical Oncology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frost", 
        "givenName": "Marlene H.", 
        "id": "sg:person.01013731327.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013731327.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Medical Oncology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartmann", 
        "givenName": "Lynn C.", 
        "id": "sg:person.0651254430.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651254430.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aubrey Thompson", 
        "givenName": "E.", 
        "id": "sg:person.012362237257.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362237257.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Health Sciences Research, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherman", 
        "givenName": "Mark E.", 
        "id": "sg:person.01011155744.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011155744.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visscher", 
        "givenName": "Daniel W.", 
        "id": "sg:person.07611541437.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611541437.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Degnim", 
        "givenName": "Amy C.", 
        "id": "sg:person.01334544324.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334544324.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radisky", 
        "givenName": "Derek C.", 
        "id": "sg:person.0605334761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605334761.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-010-0825-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000313969", 
          "https://doi.org/10.1007/s10549-010-0825-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-0825-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000313969", 
          "https://doi.org/10.1007/s10549-010-0825-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003140514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djn036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003516541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2014.55.4865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009336782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011089036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19891115)64:10<1977::aid-cncr2820641002>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012857799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijbs.6087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014894112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018012214", 
          "https://doi.org/10.1186/1471-2164-15-649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/93.5.358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018900530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-014-2862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019782110", 
          "https://doi.org/10.1007/s10549-014-2862-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-014-2862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019782110", 
          "https://doi.org/10.1007/s10549-014-2862-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djq141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022001248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3370-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024298934", 
          "https://doi.org/10.1007/s10549-015-3370-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2014.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-11-0282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.30153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027429836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-1265-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027685419", 
          "https://doi.org/10.1007/s10549-010-1265-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031810883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-10-0242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033314402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037709213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037709213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-2823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044916490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-3691-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450930", 
          "https://doi.org/10.1007/s10549-016-3691-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-3691-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450930", 
          "https://doi.org/10.1007/s10549-016-3691-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10911-010-9195-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046993607", 
          "https://doi.org/10.1007/s10911-010-9195-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10911-010-9195-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046993607", 
          "https://doi.org/10.1007/s10911-010-9195-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051240048", 
          "https://doi.org/10.1007/s10549-015-3513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051240048", 
          "https://doi.org/10.1007/s10549-015-3513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051668091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/erc.0.0080047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/erc.0.0080047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.sabcs11-p5-01-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063220768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-15-0198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063279420"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "PURPOSE: Sclerosing adenosis (SA), found in \u00bc of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA.\nMETHODS: The study group consisted of 151 women diagnosed with SA between 1967 and 2001 within the Mayo BBD cohort, of which 37 subsequently developed cancer within 10\u00a0years (cases) and 114 did not (controls). RNA was isolated from benign breast biopsies, and NanoString-based methods were used to assess expression levels of 61 genes, including 35 identified by previous array-based profiling experiments and 26 from biological insight. Diagonal linear discriminant analysis of these data was used to predict cancer within 10\u00a0years. Predictive performance was assessed with receiver operating characteristic area under the curve (ROC-AUC) values estimated from 5-fold cross-validation.\nRESULTS: Gene expression prediction models achieved cross-validated ROC-AUC estimates ranging from 0.66 to 0.70. Performing univariate associations within each of the five folds consistently identified genes DLK2, EXOC6, KIT, RGS12, and SORBS2 as significant; a model with only these five genes showed cross-validated ROC-AUC of 0.75, which compared favorably to risk prediction using established clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67).\nCONCLUSIONS: Our results demonstrate that biomarkers of breast cancer risk can be detected in benign breast tissue years prior to cancer development in women with SA. These markers can be assessed using assay methods optimized for RNA derived from FFPE biopsy tissues which are commonly available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-017-4441-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3807076", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4103225", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "166"
      }
    ], 
    "name": "NanoString-based breast cancer risk prediction for women with sclerosing adenosis", 
    "pagination": "641-650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d5e63326300eaadda7e219cba6d15dabbb1096b9e7cac889a92c15dd8ba30af"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28798985"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-017-4441-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091146642"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-017-4441-z", 
      "https://app.dimensions.ai/details/publication/pub.1091146642"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10549-017-4441-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'


 

This table displays all metadata directly associated to this object as RDF triples.

360 TRIPLES      21 PREDICATES      72 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-017-4441-z schema:about N20f22000be964c17878b306f53a99f2d
2 N27a2f9408f7e4733b4ad99ab866d1fa7
3 N2984d386330d40558d670c5860e8cd7e
4 N3d0ced3064044e9daf4acfb7b38056f0
5 N3fff5346550d40b584f45649c77c0ff8
6 N4a1d771f2a534a7280c006264878c24f
7 N6a4c71cd9fe44beebb475c2b01f4f1cf
8 N7bc3b513b36a465690ee687bf6e0d440
9 N8d90ddf0394a4febb2c6de4711f23b5b
10 Na969b68b14574704a88e105d897bb398
11 Nb117400ae9f040169eb63561ecc27340
12 Nb46d54be5ae0428a98ecd6d7c78254c2
13 Nc8e1d8fcca37495c8fca1598e2940e59
14 Nd626f7640cf2440da027179da75ab026
15 Ndcb1773bc4474014b72c750d4695fa50
16 anzsrc-for:11
17 anzsrc-for:1112
18 schema:author N4c3b2e0956154a99b10ec7d44249e55d
19 schema:citation sg:pub.10.1007/s10549-010-0825-z
20 sg:pub.10.1007/s10549-010-1265-5
21 sg:pub.10.1007/s10549-014-2862-5
22 sg:pub.10.1007/s10549-015-3370-y
23 sg:pub.10.1007/s10549-015-3513-1
24 sg:pub.10.1007/s10549-016-3691-5
25 sg:pub.10.1007/s10911-010-9195-8
26 sg:pub.10.1186/1471-2164-15-649
27 https://doi.org/10.1002/1097-0142(19891115)64:10<1977::aid-cncr2820641002>3.0.co;2-n
28 https://doi.org/10.1002/cncr.30153
29 https://doi.org/10.1016/j.bbamcr.2014.07.015
30 https://doi.org/10.1016/s0140-6736(11)61539-0
31 https://doi.org/10.1056/nejmoa044383
32 https://doi.org/10.1093/jnci/93.5.358
33 https://doi.org/10.1093/jnci/djj439
34 https://doi.org/10.1093/jnci/djn036
35 https://doi.org/10.1093/jnci/djq141
36 https://doi.org/10.1158/0008-5472.sabcs11-p5-01-07
37 https://doi.org/10.1158/1078-0432.ccr-04-0220
38 https://doi.org/10.1158/1078-0432.ccr-09-2823
39 https://doi.org/10.1158/1940-6207.capr-10-0242
40 https://doi.org/10.1158/1940-6207.capr-11-0282
41 https://doi.org/10.1158/1940-6207.capr-15-0198
42 https://doi.org/10.1200/jco.2014.55.4865
43 https://doi.org/10.1371/journal.pone.0021120
44 https://doi.org/10.1677/erc.0.0080047
45 https://doi.org/10.3322/caac.21387
46 https://doi.org/10.7150/ijbs.6087
47 schema:datePublished 2017-11
48 schema:datePublishedReg 2017-11-01
49 schema:description PURPOSE: Sclerosing adenosis (SA), found in ¼ of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA. METHODS: The study group consisted of 151 women diagnosed with SA between 1967 and 2001 within the Mayo BBD cohort, of which 37 subsequently developed cancer within 10 years (cases) and 114 did not (controls). RNA was isolated from benign breast biopsies, and NanoString-based methods were used to assess expression levels of 61 genes, including 35 identified by previous array-based profiling experiments and 26 from biological insight. Diagonal linear discriminant analysis of these data was used to predict cancer within 10 years. Predictive performance was assessed with receiver operating characteristic area under the curve (ROC-AUC) values estimated from 5-fold cross-validation. RESULTS: Gene expression prediction models achieved cross-validated ROC-AUC estimates ranging from 0.66 to 0.70. Performing univariate associations within each of the five folds consistently identified genes DLK2, EXOC6, KIT, RGS12, and SORBS2 as significant; a model with only these five genes showed cross-validated ROC-AUC of 0.75, which compared favorably to risk prediction using established clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67). CONCLUSIONS: Our results demonstrate that biomarkers of breast cancer risk can be detected in benign breast tissue years prior to cancer development in women with SA. These markers can be assessed using assay methods optimized for RNA derived from FFPE biopsy tissues which are commonly available.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N513ca7e096424a119a80a18a117aec83
54 Nf63da202e43a440aaa5486c700bae410
55 sg:journal.1092777
56 schema:name NanoString-based breast cancer risk prediction for women with sclerosing adenosis
57 schema:pagination 641-650
58 schema:productId N0621b332905d4466968c221091763b4f
59 N38535d3de4264e76b1050ebd55df4807
60 N68b8b5f755cb48d88c7c0d78050e4d4d
61 Nb39794f343394958a1d8a13263c42ae0
62 Nb6d8a745f4bf45e9bceab69dde5bba19
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146642
64 https://doi.org/10.1007/s10549-017-4441-z
65 schema:sdDatePublished 2019-04-11T09:52
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N407fc0127b3c4797889ccf31b42c84c0
68 schema:url https://link.springer.com/10.1007%2Fs10549-017-4441-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0621b332905d4466968c221091763b4f schema:name doi
73 schema:value 10.1007/s10549-017-4441-z
74 rdf:type schema:PropertyValue
75 N13791ec9c4814d0888f94982ddea4142 rdf:first sg:person.07611541437.04
76 rdf:rest Nc831a4f0aa7e4593aeb435f563288ab9
77 N1674e128d2dc41b5b7bee967b99a7e80 rdf:first sg:person.01011155744.13
78 rdf:rest N13791ec9c4814d0888f94982ddea4142
79 N20f22000be964c17878b306f53a99f2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Breast Neoplasms
81 rdf:type schema:DefinedTerm
82 N27a2f9408f7e4733b4ad99ab866d1fa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 N2984d386330d40558d670c5860e8cd7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Aged
87 rdf:type schema:DefinedTerm
88 N37d681a28f864bd289544940082b9e3e rdf:first sg:person.01122406007.03
89 rdf:rest Ne0393f5ecd634676ae0b7338ba516535
90 N38535d3de4264e76b1050ebd55df4807 schema:name pubmed_id
91 schema:value 28798985
92 rdf:type schema:PropertyValue
93 N3a9ce5ec95004d65b226e79f757af0c5 rdf:first sg:person.012362237257.28
94 rdf:rest N1674e128d2dc41b5b7bee967b99a7e80
95 N3d0ced3064044e9daf4acfb7b38056f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Middle Aged
97 rdf:type schema:DefinedTerm
98 N3fff5346550d40b584f45649c77c0ff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Young Adult
100 rdf:type schema:DefinedTerm
101 N407fc0127b3c4797889ccf31b42c84c0 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N4a1d771f2a534a7280c006264878c24f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Female
105 rdf:type schema:DefinedTerm
106 N4c3b2e0956154a99b10ec7d44249e55d rdf:first sg:person.01145766133.67
107 rdf:rest N4e10b59d4d5d47c39b5fa4d58b043099
108 N4e10b59d4d5d47c39b5fa4d58b043099 rdf:first sg:person.0747217726.46
109 rdf:rest N6c57f763a60e4d848f64311d251e54d6
110 N513ca7e096424a119a80a18a117aec83 schema:issueNumber 2
111 rdf:type schema:PublicationIssue
112 N657fdf24ddb845fe8fb6b39e54f46ab1 rdf:first sg:person.0707176746.92
113 rdf:rest N37d681a28f864bd289544940082b9e3e
114 N68b8b5f755cb48d88c7c0d78050e4d4d schema:name dimensions_id
115 schema:value pub.1091146642
116 rdf:type schema:PropertyValue
117 N6a410bca54464cdbb7a0b7e2b2cee129 rdf:first sg:person.01117141733.07
118 rdf:rest Naa8013199b5042c1b35c0678cc28245f
119 N6a4c71cd9fe44beebb475c2b01f4f1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Gene Regulatory Networks
121 rdf:type schema:DefinedTerm
122 N6c57f763a60e4d848f64311d251e54d6 rdf:first sg:person.010602020633.15
123 rdf:rest Nce51051262ed4bbe8c90d887b6def2b0
124 N733ee023fe4c43eb8f4ddffa3b30e7cd rdf:first sg:person.0717216366.33
125 rdf:rest Ncfdc1abceb364a08a120249e257aeec2
126 N7bc3b513b36a465690ee687bf6e0d440 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Gene Expression Profiling
128 rdf:type schema:DefinedTerm
129 N8a76f21e683e48be9d71a9ef5ffc3d0d rdf:first sg:person.01234406572.36
130 rdf:rest N657fdf24ddb845fe8fb6b39e54f46ab1
131 N8d90ddf0394a4febb2c6de4711f23b5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Biomarkers, Tumor
133 rdf:type schema:DefinedTerm
134 N92826197aad24f8c962642b61f009166 rdf:first sg:person.01316607713.47
135 rdf:rest N8a76f21e683e48be9d71a9ef5ffc3d0d
136 Na969b68b14574704a88e105d897bb398 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Adult
138 rdf:type schema:DefinedTerm
139 Naa8013199b5042c1b35c0678cc28245f rdf:first sg:person.01013731327.71
140 rdf:rest Ne56b34b95a9f40819b0dcf36d696e21a
141 Nb117400ae9f040169eb63561ecc27340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Genetic Predisposition to Disease
143 rdf:type schema:DefinedTerm
144 Nb39794f343394958a1d8a13263c42ae0 schema:name readcube_id
145 schema:value 3d5e63326300eaadda7e219cba6d15dabbb1096b9e7cac889a92c15dd8ba30af
146 rdf:type schema:PropertyValue
147 Nb46d54be5ae0428a98ecd6d7c78254c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Fibrocystic Breast Disease
149 rdf:type schema:DefinedTerm
150 Nb6d8a745f4bf45e9bceab69dde5bba19 schema:name nlm_unique_id
151 schema:value 8111104
152 rdf:type schema:PropertyValue
153 Nc831a4f0aa7e4593aeb435f563288ab9 rdf:first sg:person.01334544324.77
154 rdf:rest Nc8d073ed9c584738a400370540e32fc8
155 Nc8d073ed9c584738a400370540e32fc8 rdf:first sg:person.0605334761.67
156 rdf:rest rdf:nil
157 Nc8e1d8fcca37495c8fca1598e2940e59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Oligonucleotide Array Sequence Analysis
159 rdf:type schema:DefinedTerm
160 Nce51051262ed4bbe8c90d887b6def2b0 rdf:first sg:person.016426045053.76
161 rdf:rest N733ee023fe4c43eb8f4ddffa3b30e7cd
162 Ncfdc1abceb364a08a120249e257aeec2 rdf:first sg:person.01216233666.96
163 rdf:rest N92826197aad24f8c962642b61f009166
164 Nd626f7640cf2440da027179da75ab026 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Models, Genetic
166 rdf:type schema:DefinedTerm
167 Ndcb1773bc4474014b72c750d4695fa50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Risk Factors
169 rdf:type schema:DefinedTerm
170 Ne0393f5ecd634676ae0b7338ba516535 rdf:first sg:person.01003553717.42
171 rdf:rest N6a410bca54464cdbb7a0b7e2b2cee129
172 Ne56b34b95a9f40819b0dcf36d696e21a rdf:first sg:person.0651254430.48
173 rdf:rest N3a9ce5ec95004d65b226e79f757af0c5
174 Nf63da202e43a440aaa5486c700bae410 schema:volumeNumber 166
175 rdf:type schema:PublicationVolume
176 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical and Health Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
180 schema:name Oncology and Carcinogenesis
181 rdf:type schema:DefinedTerm
182 sg:grant.3807076 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-017-4441-z
183 rdf:type schema:MonetaryGrant
184 sg:grant.4103225 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-017-4441-z
185 rdf:type schema:MonetaryGrant
186 sg:journal.1092777 schema:issn 0167-6806
187 1573-7217
188 schema:name Breast Cancer Research and Treatment
189 rdf:type schema:Periodical
190 sg:person.01003553717.42 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
191 schema:familyName Denison
192 schema:givenName Lori A.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003553717.42
194 rdf:type schema:Person
195 sg:person.01011155744.13 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
196 schema:familyName Sherman
197 schema:givenName Mark E.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011155744.13
199 rdf:type schema:Person
200 sg:person.01013731327.71 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
201 schema:familyName Frost
202 schema:givenName Marlene H.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013731327.71
204 rdf:type schema:Person
205 sg:person.010602020633.15 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
206 schema:familyName Heinzen
207 schema:givenName Ethan P.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602020633.15
209 rdf:type schema:Person
210 sg:person.01117141733.07 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
211 schema:familyName Vachon
212 schema:givenName Celine M.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117141733.07
214 rdf:type schema:Person
215 sg:person.01122406007.03 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
216 schema:familyName Wang
217 schema:givenName Chen
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122406007.03
219 rdf:type schema:Person
220 sg:person.01145766133.67 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
221 schema:familyName Winham
222 schema:givenName Stacey J.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145766133.67
224 rdf:type schema:Person
225 sg:person.01216233666.96 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
226 schema:familyName Nassar
227 schema:givenName Aziza
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216233666.96
229 rdf:type schema:Person
230 sg:person.01234406572.36 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
231 schema:familyName Hoskin
232 schema:givenName Tanya L.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234406572.36
234 rdf:type schema:Person
235 sg:person.012362237257.28 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
236 schema:familyName Aubrey Thompson
237 schema:givenName E.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362237257.28
239 rdf:type schema:Person
240 sg:person.01316607713.47 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
241 schema:familyName Vierkant
242 schema:givenName Robert A.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316607713.47
244 rdf:type schema:Person
245 sg:person.01334544324.77 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
246 schema:familyName Degnim
247 schema:givenName Amy C.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334544324.77
249 rdf:type schema:Person
250 sg:person.016426045053.76 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
251 schema:familyName Broderick
252 schema:givenName Brendan T.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426045053.76
254 rdf:type schema:Person
255 sg:person.0605334761.67 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
256 schema:familyName Radisky
257 schema:givenName Derek C.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605334761.67
259 rdf:type schema:Person
260 sg:person.0651254430.48 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
261 schema:familyName Hartmann
262 schema:givenName Lynn C.
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651254430.48
264 rdf:type schema:Person
265 sg:person.0707176746.92 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
266 schema:familyName Frank
267 schema:givenName Ryan D.
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707176746.92
269 rdf:type schema:Person
270 sg:person.0717216366.33 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
271 schema:familyName Stallings-Mann
272 schema:givenName Melody
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717216366.33
274 rdf:type schema:Person
275 sg:person.0747217726.46 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
276 schema:familyName Mehner
277 schema:givenName Christine
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747217726.46
279 rdf:type schema:Person
280 sg:person.07611541437.04 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
281 schema:familyName Visscher
282 schema:givenName Daniel W.
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611541437.04
284 rdf:type schema:Person
285 sg:pub.10.1007/s10549-010-0825-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000313969
286 https://doi.org/10.1007/s10549-010-0825-z
287 rdf:type schema:CreativeWork
288 sg:pub.10.1007/s10549-010-1265-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027685419
289 https://doi.org/10.1007/s10549-010-1265-5
290 rdf:type schema:CreativeWork
291 sg:pub.10.1007/s10549-014-2862-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019782110
292 https://doi.org/10.1007/s10549-014-2862-5
293 rdf:type schema:CreativeWork
294 sg:pub.10.1007/s10549-015-3370-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024298934
295 https://doi.org/10.1007/s10549-015-3370-y
296 rdf:type schema:CreativeWork
297 sg:pub.10.1007/s10549-015-3513-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051240048
298 https://doi.org/10.1007/s10549-015-3513-1
299 rdf:type schema:CreativeWork
300 sg:pub.10.1007/s10549-016-3691-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046450930
301 https://doi.org/10.1007/s10549-016-3691-5
302 rdf:type schema:CreativeWork
303 sg:pub.10.1007/s10911-010-9195-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046993607
304 https://doi.org/10.1007/s10911-010-9195-8
305 rdf:type schema:CreativeWork
306 sg:pub.10.1186/1471-2164-15-649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018012214
307 https://doi.org/10.1186/1471-2164-15-649
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1002/1097-0142(19891115)64:10<1977::aid-cncr2820641002>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1012857799
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1002/cncr.30153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027429836
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1016/j.bbamcr.2014.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739809
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1016/s0140-6736(11)61539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003140514
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1056/nejmoa044383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037709213
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1093/jnci/93.5.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018900530
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1093/jnci/djj439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011089036
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1093/jnci/djn036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003516541
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1093/jnci/djq141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022001248
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1158/0008-5472.sabcs11-p5-01-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063220768
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1158/1078-0432.ccr-04-0220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031810883
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1158/1078-0432.ccr-09-2823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044916490
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1158/1940-6207.capr-10-0242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033314402
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1158/1940-6207.capr-11-0282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931354
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1158/1940-6207.capr-15-0198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063279420
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1200/jco.2014.55.4865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009336782
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1371/journal.pone.0021120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051668091
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1677/erc.0.0080047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844216
344 rdf:type schema:CreativeWork
345 https://doi.org/10.3322/caac.21387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894112
346 rdf:type schema:CreativeWork
347 https://doi.org/10.7150/ijbs.6087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153557
348 rdf:type schema:CreativeWork
349 https://www.grid.ac/institutes/grid.417467.7 schema:alternateName Mayo Clinic
350 schema:name Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA
351 Department of Health Sciences Research, Mayo Clinic, 32224, Jacksonville, FL, USA
352 Department of Laboratory Medicine and Pathology, Mayo Clinic, 32224, Jacksonville, FL, USA
353 rdf:type schema:Organization
354 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
355 schema:name Department of Information Technology, Mayo Clinic, 55905, Rochester, MN, USA
356 Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA
357 Department of Medical Oncology, Mayo Clinic, 55905, Rochester, MN, USA
358 Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA
359 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA
360 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...