NanoString-based breast cancer risk prediction for women with sclerosing adenosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Stacey J. Winham, Christine Mehner, Ethan P. Heinzen, Brendan T. Broderick, Melody Stallings-Mann, Aziza Nassar, Robert A. Vierkant, Tanya L. Hoskin, Ryan D. Frank, Chen Wang, Lori A. Denison, Celine M. Vachon, Marlene H. Frost, Lynn C. Hartmann, E. Aubrey Thompson, Mark E. Sherman, Daniel W. Visscher, Amy C. Degnim, Derek C. Radisky

ABSTRACT

PURPOSE: Sclerosing adenosis (SA), found in ¼ of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA. METHODS: The study group consisted of 151 women diagnosed with SA between 1967 and 2001 within the Mayo BBD cohort, of which 37 subsequently developed cancer within 10 years (cases) and 114 did not (controls). RNA was isolated from benign breast biopsies, and NanoString-based methods were used to assess expression levels of 61 genes, including 35 identified by previous array-based profiling experiments and 26 from biological insight. Diagonal linear discriminant analysis of these data was used to predict cancer within 10 years. Predictive performance was assessed with receiver operating characteristic area under the curve (ROC-AUC) values estimated from 5-fold cross-validation. RESULTS: Gene expression prediction models achieved cross-validated ROC-AUC estimates ranging from 0.66 to 0.70. Performing univariate associations within each of the five folds consistently identified genes DLK2, EXOC6, KIT, RGS12, and SORBS2 as significant; a model with only these five genes showed cross-validated ROC-AUC of 0.75, which compared favorably to risk prediction using established clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67). CONCLUSIONS: Our results demonstrate that biomarkers of breast cancer risk can be detected in benign breast tissue years prior to cancer development in women with SA. These markers can be assessed using assay methods optimized for RNA derived from FFPE biopsy tissues which are commonly available. More... »

PAGES

641-650

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z

DOI

http://dx.doi.org/10.1007/s10549-017-4441-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091146642

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28798985


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrocystic Breast Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winham", 
        "givenName": "Stacey J.", 
        "id": "sg:person.01145766133.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145766133.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehner", 
        "givenName": "Christine", 
        "id": "sg:person.0747217726.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747217726.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinzen", 
        "givenName": "Ethan P.", 
        "id": "sg:person.010602020633.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602020633.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broderick", 
        "givenName": "Brendan T.", 
        "id": "sg:person.016426045053.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426045053.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stallings-Mann", 
        "givenName": "Melody", 
        "id": "sg:person.0717216366.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717216366.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nassar", 
        "givenName": "Aziza", 
        "id": "sg:person.01216233666.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216233666.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vierkant", 
        "givenName": "Robert A.", 
        "id": "sg:person.01316607713.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316607713.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoskin", 
        "givenName": "Tanya L.", 
        "id": "sg:person.01234406572.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234406572.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frank", 
        "givenName": "Ryan D.", 
        "id": "sg:person.0707176746.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707176746.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chen", 
        "id": "sg:person.01122406007.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122406007.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Information Technology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denison", 
        "givenName": "Lori A.", 
        "id": "sg:person.01003553717.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003553717.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vachon", 
        "givenName": "Celine M.", 
        "id": "sg:person.01117141733.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117141733.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Medical Oncology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frost", 
        "givenName": "Marlene H.", 
        "id": "sg:person.01013731327.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013731327.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Medical Oncology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartmann", 
        "givenName": "Lynn C.", 
        "id": "sg:person.0651254430.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651254430.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aubrey Thompson", 
        "givenName": "E.", 
        "id": "sg:person.012362237257.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362237257.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Health Sciences Research, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherman", 
        "givenName": "Mark E.", 
        "id": "sg:person.01011155744.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011155744.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Visscher", 
        "givenName": "Daniel W.", 
        "id": "sg:person.07611541437.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611541437.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Degnim", 
        "givenName": "Amy C.", 
        "id": "sg:person.01334544324.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334544324.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mayo Clinic", 
          "id": "https://www.grid.ac/institutes/grid.417467.7", 
          "name": [
            "Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radisky", 
        "givenName": "Derek C.", 
        "id": "sg:person.0605334761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605334761.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-010-0825-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000313969", 
          "https://doi.org/10.1007/s10549-010-0825-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-0825-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000313969", 
          "https://doi.org/10.1007/s10549-010-0825-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003140514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djn036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003516541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2014.55.4865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009336782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011089036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19891115)64:10<1977::aid-cncr2820641002>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012857799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijbs.6087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014894112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018012214", 
          "https://doi.org/10.1186/1471-2164-15-649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/93.5.358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018900530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-014-2862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019782110", 
          "https://doi.org/10.1007/s10549-014-2862-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-014-2862-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019782110", 
          "https://doi.org/10.1007/s10549-014-2862-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djq141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022001248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3370-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024298934", 
          "https://doi.org/10.1007/s10549-015-3370-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2014.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-11-0282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025931354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.30153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027429836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-1265-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027685419", 
          "https://doi.org/10.1007/s10549-010-1265-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031810883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-10-0242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033314402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037709213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037709213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-2823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044916490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-3691-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450930", 
          "https://doi.org/10.1007/s10549-016-3691-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-016-3691-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450930", 
          "https://doi.org/10.1007/s10549-016-3691-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10911-010-9195-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046993607", 
          "https://doi.org/10.1007/s10911-010-9195-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10911-010-9195-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046993607", 
          "https://doi.org/10.1007/s10911-010-9195-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051240048", 
          "https://doi.org/10.1007/s10549-015-3513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-015-3513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051240048", 
          "https://doi.org/10.1007/s10549-015-3513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051668091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/erc.0.0080047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/erc.0.0080047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052844216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.sabcs11-p5-01-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063220768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-15-0198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063279420"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "PURPOSE: Sclerosing adenosis (SA), found in \u00bc of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA.\nMETHODS: The study group consisted of 151 women diagnosed with SA between 1967 and 2001 within the Mayo BBD cohort, of which 37 subsequently developed cancer within 10\u00a0years (cases) and 114 did not (controls). RNA was isolated from benign breast biopsies, and NanoString-based methods were used to assess expression levels of 61 genes, including 35 identified by previous array-based profiling experiments and 26 from biological insight. Diagonal linear discriminant analysis of these data was used to predict cancer within 10\u00a0years. Predictive performance was assessed with receiver operating characteristic area under the curve (ROC-AUC) values estimated from 5-fold cross-validation.\nRESULTS: Gene expression prediction models achieved cross-validated ROC-AUC estimates ranging from 0.66 to 0.70. Performing univariate associations within each of the five folds consistently identified genes DLK2, EXOC6, KIT, RGS12, and SORBS2 as significant; a model with only these five genes showed cross-validated ROC-AUC of 0.75, which compared favorably to risk prediction using established clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67).\nCONCLUSIONS: Our results demonstrate that biomarkers of breast cancer risk can be detected in benign breast tissue years prior to cancer development in women with SA. These markers can be assessed using assay methods optimized for RNA derived from FFPE biopsy tissues which are commonly available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-017-4441-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3807076", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4103225", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "166"
      }
    ], 
    "name": "NanoString-based breast cancer risk prediction for women with sclerosing adenosis", 
    "pagination": "641-650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d5e63326300eaadda7e219cba6d15dabbb1096b9e7cac889a92c15dd8ba30af"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28798985"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-017-4441-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091146642"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-017-4441-z", 
      "https://app.dimensions.ai/details/publication/pub.1091146642"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10549-017-4441-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-017-4441-z'


 

This table displays all metadata directly associated to this object as RDF triples.

360 TRIPLES      21 PREDICATES      72 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-017-4441-z schema:about N045f827d62824e2c966de68653613cd6
2 N0b04d83e0c58477cae0f879993cb681b
3 N0c4341c534704889b3c009f37aeccaf1
4 N1294304a13cf4741b20aec3d74c64c7b
5 N39e41ed8b6644e2fb6b471eab335a4c3
6 N614df40355e94a2c9b75a2f93ce9b61a
7 N7616e5e126c5474bae9afb6347453a88
8 N830668c1b073410ab9ae9ad510abb561
9 N916fed9f41324c96a6d4ab1b071e75e5
10 N94cad702c2694a869a50e7cf80673bb1
11 Nc5812be7c4e44a6a82c09ecc351bc311
12 Ndf068f0539944f7daa15e61415d48d31
13 Ne2ea3f440df1429eb0939d7549999b02
14 Ne56c20ee6a6141bbb76a4b1418d0af1d
15 Nfeb167d36a0f48b0bdb5ab6db800a620
16 anzsrc-for:11
17 anzsrc-for:1112
18 schema:author N812d5b8b6228438e999f179e14562108
19 schema:citation sg:pub.10.1007/s10549-010-0825-z
20 sg:pub.10.1007/s10549-010-1265-5
21 sg:pub.10.1007/s10549-014-2862-5
22 sg:pub.10.1007/s10549-015-3370-y
23 sg:pub.10.1007/s10549-015-3513-1
24 sg:pub.10.1007/s10549-016-3691-5
25 sg:pub.10.1007/s10911-010-9195-8
26 sg:pub.10.1186/1471-2164-15-649
27 https://doi.org/10.1002/1097-0142(19891115)64:10<1977::aid-cncr2820641002>3.0.co;2-n
28 https://doi.org/10.1002/cncr.30153
29 https://doi.org/10.1016/j.bbamcr.2014.07.015
30 https://doi.org/10.1016/s0140-6736(11)61539-0
31 https://doi.org/10.1056/nejmoa044383
32 https://doi.org/10.1093/jnci/93.5.358
33 https://doi.org/10.1093/jnci/djj439
34 https://doi.org/10.1093/jnci/djn036
35 https://doi.org/10.1093/jnci/djq141
36 https://doi.org/10.1158/0008-5472.sabcs11-p5-01-07
37 https://doi.org/10.1158/1078-0432.ccr-04-0220
38 https://doi.org/10.1158/1078-0432.ccr-09-2823
39 https://doi.org/10.1158/1940-6207.capr-10-0242
40 https://doi.org/10.1158/1940-6207.capr-11-0282
41 https://doi.org/10.1158/1940-6207.capr-15-0198
42 https://doi.org/10.1200/jco.2014.55.4865
43 https://doi.org/10.1371/journal.pone.0021120
44 https://doi.org/10.1677/erc.0.0080047
45 https://doi.org/10.3322/caac.21387
46 https://doi.org/10.7150/ijbs.6087
47 schema:datePublished 2017-11
48 schema:datePublishedReg 2017-11-01
49 schema:description PURPOSE: Sclerosing adenosis (SA), found in ¼ of benign breast disease (BBD) biopsies, is a histological feature characterized by lobulocentric proliferation of acini and stromal fibrosis and confers a two-fold increase in breast cancer risk compared to women in the general population. We evaluated a NanoString-based gene expression assay to model breast cancer risk using RNA derived from formalin-fixed, paraffin-embedded (FFPE) biopsies with SA. METHODS: The study group consisted of 151 women diagnosed with SA between 1967 and 2001 within the Mayo BBD cohort, of which 37 subsequently developed cancer within 10 years (cases) and 114 did not (controls). RNA was isolated from benign breast biopsies, and NanoString-based methods were used to assess expression levels of 61 genes, including 35 identified by previous array-based profiling experiments and 26 from biological insight. Diagonal linear discriminant analysis of these data was used to predict cancer within 10 years. Predictive performance was assessed with receiver operating characteristic area under the curve (ROC-AUC) values estimated from 5-fold cross-validation. RESULTS: Gene expression prediction models achieved cross-validated ROC-AUC estimates ranging from 0.66 to 0.70. Performing univariate associations within each of the five folds consistently identified genes DLK2, EXOC6, KIT, RGS12, and SORBS2 as significant; a model with only these five genes showed cross-validated ROC-AUC of 0.75, which compared favorably to risk prediction using established clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67). CONCLUSIONS: Our results demonstrate that biomarkers of breast cancer risk can be detected in benign breast tissue years prior to cancer development in women with SA. These markers can be assessed using assay methods optimized for RNA derived from FFPE biopsy tissues which are commonly available.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N15b9d92bc8a54926b89b29fef71f9894
54 N3b7f69fd8e7b4892a923007a52548d47
55 sg:journal.1092777
56 schema:name NanoString-based breast cancer risk prediction for women with sclerosing adenosis
57 schema:pagination 641-650
58 schema:productId N06434ea636f04c4a8528c17aa6ab63da
59 N6bbbc0dc8a2740afbd9ebc7df4fc70b4
60 N791765bf3f2b4d33bfb445a26a9f0f94
61 N8eeba3a58b0c4a828ec9bddc24fa8823
62 Nb39e054ac671492aa7d18383d60778cb
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091146642
64 https://doi.org/10.1007/s10549-017-4441-z
65 schema:sdDatePublished 2019-04-11T09:52
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N6f917e4513ef488eb8989d8bd1da3767
68 schema:url https://link.springer.com/10.1007%2Fs10549-017-4441-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N045f827d62824e2c966de68653613cd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Risk Factors
74 rdf:type schema:DefinedTerm
75 N06434ea636f04c4a8528c17aa6ab63da schema:name pubmed_id
76 schema:value 28798985
77 rdf:type schema:PropertyValue
78 N085883a5263548f49e3a7ccde69f5eee rdf:first sg:person.010602020633.15
79 rdf:rest Ne3d45152f8be4252932a1bc0099f68e7
80 N0b04d83e0c58477cae0f879993cb681b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Female
82 rdf:type schema:DefinedTerm
83 N0c4341c534704889b3c009f37aeccaf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Gene Expression Profiling
85 rdf:type schema:DefinedTerm
86 N0e63eab144c64f12a70ce947242f9e03 rdf:first sg:person.012362237257.28
87 rdf:rest Ncfcab74eab2344c3989dbf33239e2fc3
88 N1294304a13cf4741b20aec3d74c64c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Breast Neoplasms
90 rdf:type schema:DefinedTerm
91 N15b9d92bc8a54926b89b29fef71f9894 schema:issueNumber 2
92 rdf:type schema:PublicationIssue
93 N1671c61d9349400698eedbc1775aa050 rdf:first sg:person.0717216366.33
94 rdf:rest Ndb4169ad6c634119aad6ff95778776fc
95 N249b5858e4e84dfe98ccb7c3b6141fa2 rdf:first sg:person.01316607713.47
96 rdf:rest N2baf035f78844aed93dad735241ded0c
97 N2baf035f78844aed93dad735241ded0c rdf:first sg:person.01234406572.36
98 rdf:rest N5ffa87a88ffa4b3a81ff5d71da6c1636
99 N39e41ed8b6644e2fb6b471eab335a4c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Models, Genetic
101 rdf:type schema:DefinedTerm
102 N3b7f69fd8e7b4892a923007a52548d47 schema:volumeNumber 166
103 rdf:type schema:PublicationVolume
104 N41b5e676e7ff4da8ac80ef600c24b3fa rdf:first sg:person.01003553717.42
105 rdf:rest N69ea8a2fd0434407b9a37b0cd04ac661
106 N45db02c4f57f4d84a52699a428bddd09 rdf:first sg:person.0605334761.67
107 rdf:rest rdf:nil
108 N479404f84b304e9782be942dd900df3d rdf:first sg:person.01334544324.77
109 rdf:rest N45db02c4f57f4d84a52699a428bddd09
110 N5ffa87a88ffa4b3a81ff5d71da6c1636 rdf:first sg:person.0707176746.92
111 rdf:rest N621d36934e3d4627b8db7f263160bf6b
112 N614df40355e94a2c9b75a2f93ce9b61a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Genetic Predisposition to Disease
114 rdf:type schema:DefinedTerm
115 N621d36934e3d4627b8db7f263160bf6b rdf:first sg:person.01122406007.03
116 rdf:rest N41b5e676e7ff4da8ac80ef600c24b3fa
117 N69ea8a2fd0434407b9a37b0cd04ac661 rdf:first sg:person.01117141733.07
118 rdf:rest Nc5953edead4547808f0537856ca8c6ee
119 N6bbbc0dc8a2740afbd9ebc7df4fc70b4 schema:name nlm_unique_id
120 schema:value 8111104
121 rdf:type schema:PropertyValue
122 N6f917e4513ef488eb8989d8bd1da3767 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N7616e5e126c5474bae9afb6347453a88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Young Adult
126 rdf:type schema:DefinedTerm
127 N791765bf3f2b4d33bfb445a26a9f0f94 schema:name doi
128 schema:value 10.1007/s10549-017-4441-z
129 rdf:type schema:PropertyValue
130 N812d5b8b6228438e999f179e14562108 rdf:first sg:person.01145766133.67
131 rdf:rest Na622e255d79745d4aaa74724d1031be0
132 N830668c1b073410ab9ae9ad510abb561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Fibrocystic Breast Disease
134 rdf:type schema:DefinedTerm
135 N8eeba3a58b0c4a828ec9bddc24fa8823 schema:name readcube_id
136 schema:value 3d5e63326300eaadda7e219cba6d15dabbb1096b9e7cac889a92c15dd8ba30af
137 rdf:type schema:PropertyValue
138 N916fed9f41324c96a6d4ab1b071e75e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Middle Aged
140 rdf:type schema:DefinedTerm
141 N94cad702c2694a869a50e7cf80673bb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Oligonucleotide Array Sequence Analysis
143 rdf:type schema:DefinedTerm
144 Na622e255d79745d4aaa74724d1031be0 rdf:first sg:person.0747217726.46
145 rdf:rest N085883a5263548f49e3a7ccde69f5eee
146 Nb39e054ac671492aa7d18383d60778cb schema:name dimensions_id
147 schema:value pub.1091146642
148 rdf:type schema:PropertyValue
149 Nc5812be7c4e44a6a82c09ecc351bc311 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Gene Regulatory Networks
151 rdf:type schema:DefinedTerm
152 Nc5953edead4547808f0537856ca8c6ee rdf:first sg:person.01013731327.71
153 rdf:rest Nd2eae57832a242959f2151b3f23dcb5d
154 Nca1edad02e204b11bfb71bfa68b8dc3a rdf:first sg:person.07611541437.04
155 rdf:rest N479404f84b304e9782be942dd900df3d
156 Ncfcab74eab2344c3989dbf33239e2fc3 rdf:first sg:person.01011155744.13
157 rdf:rest Nca1edad02e204b11bfb71bfa68b8dc3a
158 Nd2eae57832a242959f2151b3f23dcb5d rdf:first sg:person.0651254430.48
159 rdf:rest N0e63eab144c64f12a70ce947242f9e03
160 Ndb4169ad6c634119aad6ff95778776fc rdf:first sg:person.01216233666.96
161 rdf:rest N249b5858e4e84dfe98ccb7c3b6141fa2
162 Ndf068f0539944f7daa15e61415d48d31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Biomarkers, Tumor
164 rdf:type schema:DefinedTerm
165 Ne2ea3f440df1429eb0939d7549999b02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Aged
167 rdf:type schema:DefinedTerm
168 Ne3d45152f8be4252932a1bc0099f68e7 rdf:first sg:person.016426045053.76
169 rdf:rest N1671c61d9349400698eedbc1775aa050
170 Ne56c20ee6a6141bbb76a4b1418d0af1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Adult
172 rdf:type schema:DefinedTerm
173 Nfeb167d36a0f48b0bdb5ab6db800a620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Humans
175 rdf:type schema:DefinedTerm
176 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
177 schema:name Medical and Health Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
180 schema:name Oncology and Carcinogenesis
181 rdf:type schema:DefinedTerm
182 sg:grant.3807076 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-017-4441-z
183 rdf:type schema:MonetaryGrant
184 sg:grant.4103225 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-017-4441-z
185 rdf:type schema:MonetaryGrant
186 sg:journal.1092777 schema:issn 0167-6806
187 1573-7217
188 schema:name Breast Cancer Research and Treatment
189 rdf:type schema:Periodical
190 sg:person.01003553717.42 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
191 schema:familyName Denison
192 schema:givenName Lori A.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003553717.42
194 rdf:type schema:Person
195 sg:person.01011155744.13 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
196 schema:familyName Sherman
197 schema:givenName Mark E.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011155744.13
199 rdf:type schema:Person
200 sg:person.01013731327.71 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
201 schema:familyName Frost
202 schema:givenName Marlene H.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013731327.71
204 rdf:type schema:Person
205 sg:person.010602020633.15 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
206 schema:familyName Heinzen
207 schema:givenName Ethan P.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602020633.15
209 rdf:type schema:Person
210 sg:person.01117141733.07 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
211 schema:familyName Vachon
212 schema:givenName Celine M.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117141733.07
214 rdf:type schema:Person
215 sg:person.01122406007.03 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
216 schema:familyName Wang
217 schema:givenName Chen
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122406007.03
219 rdf:type schema:Person
220 sg:person.01145766133.67 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
221 schema:familyName Winham
222 schema:givenName Stacey J.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145766133.67
224 rdf:type schema:Person
225 sg:person.01216233666.96 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
226 schema:familyName Nassar
227 schema:givenName Aziza
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216233666.96
229 rdf:type schema:Person
230 sg:person.01234406572.36 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
231 schema:familyName Hoskin
232 schema:givenName Tanya L.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234406572.36
234 rdf:type schema:Person
235 sg:person.012362237257.28 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
236 schema:familyName Aubrey Thompson
237 schema:givenName E.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012362237257.28
239 rdf:type schema:Person
240 sg:person.01316607713.47 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
241 schema:familyName Vierkant
242 schema:givenName Robert A.
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316607713.47
244 rdf:type schema:Person
245 sg:person.01334544324.77 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
246 schema:familyName Degnim
247 schema:givenName Amy C.
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334544324.77
249 rdf:type schema:Person
250 sg:person.016426045053.76 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
251 schema:familyName Broderick
252 schema:givenName Brendan T.
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426045053.76
254 rdf:type schema:Person
255 sg:person.0605334761.67 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
256 schema:familyName Radisky
257 schema:givenName Derek C.
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605334761.67
259 rdf:type schema:Person
260 sg:person.0651254430.48 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
261 schema:familyName Hartmann
262 schema:givenName Lynn C.
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651254430.48
264 rdf:type schema:Person
265 sg:person.0707176746.92 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
266 schema:familyName Frank
267 schema:givenName Ryan D.
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707176746.92
269 rdf:type schema:Person
270 sg:person.0717216366.33 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
271 schema:familyName Stallings-Mann
272 schema:givenName Melody
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717216366.33
274 rdf:type schema:Person
275 sg:person.0747217726.46 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
276 schema:familyName Mehner
277 schema:givenName Christine
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747217726.46
279 rdf:type schema:Person
280 sg:person.07611541437.04 schema:affiliation https://www.grid.ac/institutes/grid.66875.3a
281 schema:familyName Visscher
282 schema:givenName Daniel W.
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611541437.04
284 rdf:type schema:Person
285 sg:pub.10.1007/s10549-010-0825-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000313969
286 https://doi.org/10.1007/s10549-010-0825-z
287 rdf:type schema:CreativeWork
288 sg:pub.10.1007/s10549-010-1265-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027685419
289 https://doi.org/10.1007/s10549-010-1265-5
290 rdf:type schema:CreativeWork
291 sg:pub.10.1007/s10549-014-2862-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019782110
292 https://doi.org/10.1007/s10549-014-2862-5
293 rdf:type schema:CreativeWork
294 sg:pub.10.1007/s10549-015-3370-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024298934
295 https://doi.org/10.1007/s10549-015-3370-y
296 rdf:type schema:CreativeWork
297 sg:pub.10.1007/s10549-015-3513-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051240048
298 https://doi.org/10.1007/s10549-015-3513-1
299 rdf:type schema:CreativeWork
300 sg:pub.10.1007/s10549-016-3691-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046450930
301 https://doi.org/10.1007/s10549-016-3691-5
302 rdf:type schema:CreativeWork
303 sg:pub.10.1007/s10911-010-9195-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046993607
304 https://doi.org/10.1007/s10911-010-9195-8
305 rdf:type schema:CreativeWork
306 sg:pub.10.1186/1471-2164-15-649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018012214
307 https://doi.org/10.1186/1471-2164-15-649
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1002/1097-0142(19891115)64:10<1977::aid-cncr2820641002>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1012857799
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1002/cncr.30153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027429836
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1016/j.bbamcr.2014.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739809
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1016/s0140-6736(11)61539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003140514
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1056/nejmoa044383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037709213
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1093/jnci/93.5.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018900530
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1093/jnci/djj439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011089036
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1093/jnci/djn036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003516541
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1093/jnci/djq141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022001248
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1158/0008-5472.sabcs11-p5-01-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063220768
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1158/1078-0432.ccr-04-0220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031810883
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1158/1078-0432.ccr-09-2823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044916490
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1158/1940-6207.capr-10-0242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033314402
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1158/1940-6207.capr-11-0282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931354
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1158/1940-6207.capr-15-0198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063279420
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1200/jco.2014.55.4865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009336782
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1371/journal.pone.0021120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051668091
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1677/erc.0.0080047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844216
344 rdf:type schema:CreativeWork
345 https://doi.org/10.3322/caac.21387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014894112
346 rdf:type schema:CreativeWork
347 https://doi.org/10.7150/ijbs.6087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153557
348 rdf:type schema:CreativeWork
349 https://www.grid.ac/institutes/grid.417467.7 schema:alternateName Mayo Clinic
350 schema:name Department of Cancer Biology, Mayo Clinic, 32224, Jacksonville, FL, USA
351 Department of Health Sciences Research, Mayo Clinic, 32224, Jacksonville, FL, USA
352 Department of Laboratory Medicine and Pathology, Mayo Clinic, 32224, Jacksonville, FL, USA
353 rdf:type schema:Organization
354 https://www.grid.ac/institutes/grid.66875.3a schema:alternateName Mayo Clinic
355 schema:name Department of Information Technology, Mayo Clinic, 55905, Rochester, MN, USA
356 Department of Laboratory Medicine and Pathology, Mayo Clinic, 55905, Rochester, MN, USA
357 Department of Medical Oncology, Mayo Clinic, 55905, Rochester, MN, USA
358 Department of Surgery, Mayo Clinic, 55905, Rochester, MN, USA
359 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 55905, Rochester, MN, USA
360 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...