A two-stage approach to genetic risk assessment in primary care View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01

AUTHORS

Swati Biswas, Philamer Atienza, Jonathan Chipman, Amanda L. Blackford, Banu Arun, Kevin Hughes, Giovanni Parmigiani

ABSTRACT

Genetic risk prediction models such as BRCAPRO are used routinely in genetic counseling for identification of potential BRCA1 and BRCA2 mutation carriers. They require extensive information on the counselee and her family history, and thus are not practical for primary care. To address this gap, we develop and test a two-stage approach to genetic risk assessment by balancing the tradeoff between the amount of information used and accuracy achieved. The first stage is intended for primary care wherein limited information is collected and analyzed using a simplified version of BRCAPRO. If the assessed risk is sufficiently high, more extensive information is collected and the full BRCAPRO is used (stage two: intended for genetic counseling). We consider three first-stage tools: BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple. We evaluate the two-stage approach on independent clinical data on probands with family history of breast and ovarian cancers, and BRCA genetic test results. These include population-based data on 1344 probands from Newton-Wellesley Hospital and mostly high-risk family data on 2713 probands from Cancer Genetics Network and MD Anderson Cancer Center. We use discrimination and calibration measures, appropriately modified to evaluate the overall performance of a two-stage approach. We find that the proposed two-stage approach has very limited loss of discrimination and comparable calibration as BRCAPRO. It identifies a similar number of carriers without requiring a full family history evaluation on all probands. We conclude that the two-stage approach allows for practical large-scale genetic risk assessment in primary care. More... »

PAGES

375-383

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-016-3686-2

DOI

http://dx.doi.org/10.1007/s10549-016-3686-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027265145

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26786860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "BRCA1 Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "BRCA2 Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Counseling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pedigree", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primary Health Care", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "Department of Mathematical Sciences, University of Texas at Dallas, FO 35, 800 West Campbell Road, 75080-3021, Richardson, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biswas", 
        "givenName": "Swati", 
        "id": "sg:person.01212700777.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212700777.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas Health Science Center", 
          "id": "https://www.grid.ac/institutes/grid.266871.c", 
          "name": [
            "Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, Fort Worth, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atienza", 
        "givenName": "Philamer", 
        "id": "sg:person.01261014177.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261014177.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Department of Biostatistics, Vanderbilt School of Medicine, Nashville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chipman", 
        "givenName": "Jonathan", 
        "id": "sg:person.01114403366.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114403366.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Division of Biostatistics and Bioinformatics, School of Medicine, Johns Hopkins University, Baltimore, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blackford", 
        "givenName": "Amanda L.", 
        "id": "sg:person.01003562505.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Medical Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arun", 
        "givenName": "Banu", 
        "id": "sg:person.0763665266.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763665266.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Massachusetts General Hospital and Harvard School of Medicine, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hughes", 
        "givenName": "Kevin", 
        "id": "sg:person.0655270105.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655270105.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, USA", 
            "Department of Biostatistics, Harvard School of Public Health, Boston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parmigiani", 
        "givenName": "Giovanni", 
        "id": "sg:person.01213127733.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-012-1958-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000823396", 
          "https://doi.org/10.1007/s10549-012-1958-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/375033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/375033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/301670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007199629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4741.2009.00690.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4741.2009.00690.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019926111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029115431", 
          "https://doi.org/10.1186/bcr1866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.09.2452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031194374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/cin.s17292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035497255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-012-2257-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038058153", 
          "https://doi.org/10.1245/s10434-012-2257-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1399-0004.2000.580408.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039076436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-2653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040867314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2350-8-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042243193", 
          "https://doi.org/10.1186/1471-2350-8-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2008.20.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046955449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-013-2564-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048584261", 
          "https://doi.org/10.1007/s10549-013-2564-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.296.12.1479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050173803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4741.2009.00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051959316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1524-4741.2009.00796.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051959316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053035976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1088759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-147-7-200710020-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073709509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1996.14.5.1730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082882850"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "Genetic risk prediction models such as BRCAPRO are used routinely in genetic counseling for identification of potential BRCA1 and BRCA2 mutation carriers. They require extensive information on the counselee and her family history, and thus are not practical for primary care. To address this gap, we develop and test a two-stage approach to genetic risk assessment by balancing the tradeoff between the amount of information used and accuracy achieved. The first stage is intended for primary care wherein limited information is collected and analyzed using a simplified version of BRCAPRO. If the assessed risk is sufficiently high, more extensive information is collected and the full BRCAPRO is used (stage two: intended for genetic counseling). We consider three first-stage tools: BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple. We evaluate the two-stage approach on independent clinical data on probands with family history of breast and ovarian cancers, and BRCA genetic test results. These include population-based data on 1344 probands from Newton-Wellesley Hospital and mostly high-risk family data on 2713 probands from Cancer Genetics Network and MD Anderson Cancer Center. We use discrimination and calibration measures, appropriately modified to evaluate the overall performance of a two-stage approach. We find that the proposed two-stage approach has very limited loss of discrimination and comparable calibration as BRCAPRO. It identifies a similar number of carriers without requiring a full family history evaluation on all probands. We conclude that the two-stage approach allows for practical large-scale genetic risk assessment in primary care.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-016-3686-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438826", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2570000", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438789", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "155"
      }
    ], 
    "name": "A two-stage approach to genetic risk assessment in primary care", 
    "pagination": "375-383", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81e1b1cab36374d8b7414ba6294025c2d5361c63e1b715ba151b96b049c64474"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26786860"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-016-3686-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027265145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-016-3686-2", 
      "https://app.dimensions.ai/details/publication/pub.1027265145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10549-016-3686-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-016-3686-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-016-3686-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-016-3686-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-016-3686-2'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      65 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-016-3686-2 schema:about N01852b8c3f1d49d0ac872772d52f120f
2 N05f597a0eb34434889743d0bcdb00f65
3 N30f738273a774252962c14f130c5cd7b
4 N3c799bec6bcb41fdaf842aeead56cd25
5 N473454e927ce4c4ebcfc713846eb1e4c
6 N4cd994931903465986dc3a4f91e8e6d7
7 N6989ad610292423f8cb429fb81e93c47
8 N844ee55d1f944c7099a07c5ff7a64d84
9 N883c1fdfebe84c21908b3bed62ebdc04
10 N8b3acfc6558946d59328200a92aa4f05
11 N95fe038dc2044bec849f3ab3f49e5d1f
12 N97aaa365a70548be915ff98ca2350ed1
13 Nc55b31c2014943c28b6cb1c247660c0b
14 Ncbfbb33f1d9549f3901c31665258705c
15 Nd0a7d050cba14de5b08966519df6f8c8
16 Ne8fd05f3da154761b4f5af4e20c9ef0e
17 anzsrc-for:11
18 anzsrc-for:1117
19 schema:author N62946bc8feb94ca497e6e5c5251a4259
20 schema:citation sg:pub.10.1007/s10549-012-1958-z
21 sg:pub.10.1007/s10549-013-2564-4
22 sg:pub.10.1186/1471-2350-8-13
23 sg:pub.10.1186/bcr1866
24 sg:pub.10.1245/s10434-012-2257-y
25 https://doi.org/10.1001/jama.296.12.1479
26 https://doi.org/10.1002/sim.3302
27 https://doi.org/10.1034/j.1399-0004.2000.580408.x
28 https://doi.org/10.1086/301670
29 https://doi.org/10.1086/375033
30 https://doi.org/10.1111/j.1524-4741.2009.00690.x
31 https://doi.org/10.1111/j.1524-4741.2009.00796.x
32 https://doi.org/10.1126/science.1088759
33 https://doi.org/10.1158/0008-5472.can-09-2653
34 https://doi.org/10.1200/jco.1996.14.5.1730
35 https://doi.org/10.1200/jco.2006.09.2452
36 https://doi.org/10.1200/jco.2008.20.6896
37 https://doi.org/10.2202/1544-6115.1063
38 https://doi.org/10.4137/cin.s17292
39 https://doi.org/10.7326/0003-4819-147-7-200710020-00002
40 schema:datePublished 2016-01
41 schema:datePublishedReg 2016-01-01
42 schema:description Genetic risk prediction models such as BRCAPRO are used routinely in genetic counseling for identification of potential BRCA1 and BRCA2 mutation carriers. They require extensive information on the counselee and her family history, and thus are not practical for primary care. To address this gap, we develop and test a two-stage approach to genetic risk assessment by balancing the tradeoff between the amount of information used and accuracy achieved. The first stage is intended for primary care wherein limited information is collected and analyzed using a simplified version of BRCAPRO. If the assessed risk is sufficiently high, more extensive information is collected and the full BRCAPRO is used (stage two: intended for genetic counseling). We consider three first-stage tools: BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple. We evaluate the two-stage approach on independent clinical data on probands with family history of breast and ovarian cancers, and BRCA genetic test results. These include population-based data on 1344 probands from Newton-Wellesley Hospital and mostly high-risk family data on 2713 probands from Cancer Genetics Network and MD Anderson Cancer Center. We use discrimination and calibration measures, appropriately modified to evaluate the overall performance of a two-stage approach. We find that the proposed two-stage approach has very limited loss of discrimination and comparable calibration as BRCAPRO. It identifies a similar number of carriers without requiring a full family history evaluation on all probands. We conclude that the two-stage approach allows for practical large-scale genetic risk assessment in primary care.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf Nb52db63cd0a4434983f40632af7ca314
47 Nef29e1fb96894ccd8cbf7c97dc2d91cf
48 sg:journal.1092777
49 schema:name A two-stage approach to genetic risk assessment in primary care
50 schema:pagination 375-383
51 schema:productId N0488a0ba247d46df8a4fd2a5ee55ffde
52 N16a500ef660b4eacbf3bbfbc5feaf19d
53 N553e4ceb80a14ba3953abf08bfb00bd1
54 N8cb3b8a88ab64bf798c00518b9411e7f
55 Nea930554e3954eda8222e5a70f658eb3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027265145
57 https://doi.org/10.1007/s10549-016-3686-2
58 schema:sdDatePublished 2019-04-10T23:24
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nd7e612835ec74f9ba47a1e52dfc9c202
61 schema:url http://link.springer.com/10.1007%2Fs10549-016-3686-2
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N01852b8c3f1d49d0ac872772d52f120f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Female
67 rdf:type schema:DefinedTerm
68 N0488a0ba247d46df8a4fd2a5ee55ffde schema:name dimensions_id
69 schema:value pub.1027265145
70 rdf:type schema:PropertyValue
71 N05f597a0eb34434889743d0bcdb00f65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Male
73 rdf:type schema:DefinedTerm
74 N16a500ef660b4eacbf3bbfbc5feaf19d schema:name readcube_id
75 schema:value 81e1b1cab36374d8b7414ba6294025c2d5361c63e1b715ba151b96b049c64474
76 rdf:type schema:PropertyValue
77 N2e727cc9ac804d1f843b95d1db97e2d3 rdf:first sg:person.01114403366.68
78 rdf:rest Nc87cae7226284c3eb943ee96cdea9816
79 N30f738273a774252962c14f130c5cd7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Retrospective Studies
81 rdf:type schema:DefinedTerm
82 N3c799bec6bcb41fdaf842aeead56cd25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Middle Aged
84 rdf:type schema:DefinedTerm
85 N473454e927ce4c4ebcfc713846eb1e4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Ovarian Neoplasms
87 rdf:type schema:DefinedTerm
88 N4cd994931903465986dc3a4f91e8e6d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Breast Neoplasms
90 rdf:type schema:DefinedTerm
91 N553e4ceb80a14ba3953abf08bfb00bd1 schema:name nlm_unique_id
92 schema:value 8111104
93 rdf:type schema:PropertyValue
94 N575c13241bb04a4fba516169fc792e16 rdf:first sg:person.01213127733.91
95 rdf:rest rdf:nil
96 N62946bc8feb94ca497e6e5c5251a4259 rdf:first sg:person.01212700777.53
97 rdf:rest N6d6ce9e332e14170a735b0371348aa66
98 N67b1788690a8450c9ec6cc3c02785b4d rdf:first sg:person.0763665266.91
99 rdf:rest Nc6c0a6254dd844f786aed17d85c11a67
100 N6989ad610292423f8cb429fb81e93c47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Primary Health Care
102 rdf:type schema:DefinedTerm
103 N6d6ce9e332e14170a735b0371348aa66 rdf:first sg:person.01261014177.24
104 rdf:rest N2e727cc9ac804d1f843b95d1db97e2d3
105 N844ee55d1f944c7099a07c5ff7a64d84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name BRCA1 Protein
107 rdf:type schema:DefinedTerm
108 N883c1fdfebe84c21908b3bed62ebdc04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name BRCA2 Protein
110 rdf:type schema:DefinedTerm
111 N8b3acfc6558946d59328200a92aa4f05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Pedigree
113 rdf:type schema:DefinedTerm
114 N8cb3b8a88ab64bf798c00518b9411e7f schema:name doi
115 schema:value 10.1007/s10549-016-3686-2
116 rdf:type schema:PropertyValue
117 N95fe038dc2044bec849f3ab3f49e5d1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Mutation
119 rdf:type schema:DefinedTerm
120 N97aaa365a70548be915ff98ca2350ed1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Genetic Predisposition to Disease
122 rdf:type schema:DefinedTerm
123 Nb52db63cd0a4434983f40632af7ca314 schema:issueNumber 2
124 rdf:type schema:PublicationIssue
125 Nbd7309de71b747d7b84a85530ea4f205 schema:name Massachusetts General Hospital and Harvard School of Medicine, Boston, USA
126 rdf:type schema:Organization
127 Nc55b31c2014943c28b6cb1c247660c0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Genetic Counseling
129 rdf:type schema:DefinedTerm
130 Nc6c0a6254dd844f786aed17d85c11a67 rdf:first sg:person.0655270105.65
131 rdf:rest N575c13241bb04a4fba516169fc792e16
132 Nc87cae7226284c3eb943ee96cdea9816 rdf:first sg:person.01003562505.03
133 rdf:rest N67b1788690a8450c9ec6cc3c02785b4d
134 Ncbfbb33f1d9549f3901c31665258705c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Risk Factors
136 rdf:type schema:DefinedTerm
137 Nd0a7d050cba14de5b08966519df6f8c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Risk Assessment
139 rdf:type schema:DefinedTerm
140 Nd7e612835ec74f9ba47a1e52dfc9c202 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Ne8fd05f3da154761b4f5af4e20c9ef0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 Nea930554e3954eda8222e5a70f658eb3 schema:name pubmed_id
146 schema:value 26786860
147 rdf:type schema:PropertyValue
148 Nef29e1fb96894ccd8cbf7c97dc2d91cf schema:volumeNumber 155
149 rdf:type schema:PublicationVolume
150 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
151 schema:name Medical and Health Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
154 schema:name Public Health and Health Services
155 rdf:type schema:DefinedTerm
156 sg:grant.2438789 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-016-3686-2
157 rdf:type schema:MonetaryGrant
158 sg:grant.2438826 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-016-3686-2
159 rdf:type schema:MonetaryGrant
160 sg:grant.2570000 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-016-3686-2
161 rdf:type schema:MonetaryGrant
162 sg:journal.1092777 schema:issn 0167-6806
163 1573-7217
164 schema:name Breast Cancer Research and Treatment
165 rdf:type schema:Periodical
166 sg:person.01003562505.03 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
167 schema:familyName Blackford
168 schema:givenName Amanda L.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03
170 rdf:type schema:Person
171 sg:person.01114403366.68 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
172 schema:familyName Chipman
173 schema:givenName Jonathan
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114403366.68
175 rdf:type schema:Person
176 sg:person.01212700777.53 schema:affiliation https://www.grid.ac/institutes/grid.267323.1
177 schema:familyName Biswas
178 schema:givenName Swati
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212700777.53
180 rdf:type schema:Person
181 sg:person.01213127733.91 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
182 schema:familyName Parmigiani
183 schema:givenName Giovanni
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91
185 rdf:type schema:Person
186 sg:person.01261014177.24 schema:affiliation https://www.grid.ac/institutes/grid.266871.c
187 schema:familyName Atienza
188 schema:givenName Philamer
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261014177.24
190 rdf:type schema:Person
191 sg:person.0655270105.65 schema:affiliation Nbd7309de71b747d7b84a85530ea4f205
192 schema:familyName Hughes
193 schema:givenName Kevin
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655270105.65
195 rdf:type schema:Person
196 sg:person.0763665266.91 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
197 schema:familyName Arun
198 schema:givenName Banu
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763665266.91
200 rdf:type schema:Person
201 sg:pub.10.1007/s10549-012-1958-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000823396
202 https://doi.org/10.1007/s10549-012-1958-z
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s10549-013-2564-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048584261
205 https://doi.org/10.1007/s10549-013-2564-4
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/1471-2350-8-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042243193
208 https://doi.org/10.1186/1471-2350-8-13
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/bcr1866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029115431
211 https://doi.org/10.1186/bcr1866
212 rdf:type schema:CreativeWork
213 sg:pub.10.1245/s10434-012-2257-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038058153
214 https://doi.org/10.1245/s10434-012-2257-y
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1001/jama.296.12.1479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050173803
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/sim.3302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019926111
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1034/j.1399-0004.2000.580408.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039076436
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1086/301670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007199629
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1086/375033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331489
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1524-4741.2009.00690.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460355
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/j.1524-4741.2009.00796.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051959316
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1088759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448491
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1158/0008-5472.can-09-2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040867314
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1200/jco.1996.14.5.1730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082882850
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1200/jco.2006.09.2452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031194374
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1200/jco.2008.20.6896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046955449
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2202/1544-6115.1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053035976
241 rdf:type schema:CreativeWork
242 https://doi.org/10.4137/cin.s17292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035497255
243 rdf:type schema:CreativeWork
244 https://doi.org/10.7326/0003-4819-147-7-200710020-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709509
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
247 schema:name Department of Biostatistics, Vanderbilt School of Medicine, Nashville, USA
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
250 schema:name Division of Biostatistics and Bioinformatics, School of Medicine, Johns Hopkins University, Baltimore, USA
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
253 schema:name Department of Breast Medical Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.266871.c schema:alternateName University of North Texas Health Science Center
256 schema:name Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, Fort Worth, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.267323.1 schema:alternateName The University of Texas at Dallas
259 schema:name Department of Mathematical Sciences, University of Texas at Dallas, FO 35, 800 West Campbell Road, 75080-3021, Richardson, TX, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
262 schema:name Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, USA
263 Department of Biostatistics, Harvard School of Public Health, Boston, USA
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...