Assessing the added value of breast tumor markers in genetic risk prediction model BRCAPRO View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Swati Biswas, Neelam Tankhiwale, Amanda Blackford, Angelica M. Gutierrez Barrera, Kaylene Ready, Karen Lu, Christopher I. Amos, Giovanni Parmigiani, Banu Arun

ABSTRACT

The BRCAPRO model estimates carrier probabilities for the BRCA1 and BRCA2 genes, and was recently enhanced to use estrogen receptor (ER) and progesterone receptor (PR) status of breast cancer. No independent assessment of the added value of these markers exists. Moreover, earlier versions of BRCAPRO did not use human epidermal growth factor receptor 2 (Her-2/neu) status of breast cancer. Here, we incorporate Her-2/neu in BRCAPRO and validate all the markers. We trained the enhanced model on 406 germline tested individuals, and validated on a separate clinical cohort of 796 individuals for whom test results and family history are available. For model-building, we estimated joint probabilities of ER, PR, and Her-2/neu status for carriers and non-carriers of BRCA1/2 mutations. For validation, we obtained BRCAPRO predictions with and without markers. We calculated area under the receiver operating characteristic curve (AUC), sensitivity, specificity, predictive values, and correct reclassification rates. The AUC for predicting BRCA1 status among individuals who are carriers of at least one mutation improved when ER and PR were used. The AUC for predicting the presence of either mutation improved when Her-2/neu was added. Use of markers also produced highly significant correct reclassification improvements in both cases. Breast tumor markers are useful for prediction of BRCA1/2 mutation status. ER and PR improve discrimination between BRCA1 and BRCA2 mutation carriers while Her-2/neu helps discriminate between carriers and non-carriers, particularly among women who are ER positive and Her-2/neu negative. These results support the use of the enhanced version of BRCAPRO in clinical settings. More... »

PAGES

347-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-012-1958-z

DOI

http://dx.doi.org/10.1007/s10549-012-1958-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000823396

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22270937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "BRCA1 Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "BRCA2 Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms, Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heterozygote", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pedigree", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Progesterone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Texas Health Science Center", 
          "id": "https://www.grid.ac/institutes/grid.266871.c", 
          "name": [
            "Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, 76107-2699, Fort Worth, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biswas", 
        "givenName": "Swati", 
        "id": "sg:person.01212700777.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212700777.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas Health Science Center", 
          "id": "https://www.grid.ac/institutes/grid.266871.c", 
          "name": [
            "Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, 76107-2699, Fort Worth, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tankhiwale", 
        "givenName": "Neelam", 
        "id": "sg:person.0765244203.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765244203.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Division of Biostatistics, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blackford", 
        "givenName": "Amanda", 
        "id": "sg:person.01003562505.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Medical Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barrera", 
        "givenName": "Angelica M. Gutierrez", 
        "id": "sg:person.01215721203.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215721203.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Medical Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ready", 
        "givenName": "Kaylene", 
        "id": "sg:person.01350634647.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350634647.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Gynecologic Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Karen", 
        "id": "sg:person.016476556517.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476556517.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amos", 
        "givenName": "Christopher I.", 
        "id": "sg:person.013765676317.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013765676317.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA", 
            "Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parmigiani", 
        "givenName": "Giovanni", 
        "id": "sg:person.01213127733.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Breast Medical Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arun", 
        "givenName": "Banu", 
        "id": "sg:person.0763665266.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763665266.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/jnci/94.11.844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/375033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/375033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.9737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003239502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/301670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007199629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.3302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019926111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2008.16.6231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022469883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029115431", 
          "https://doi.org/10.1186/bcr1866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-2424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030469170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037258459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037258459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.02.2368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038573680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2003.013623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040929977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041506986", 
          "https://doi.org/10.1038/sj.bjc.6603358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6603358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041506986", 
          "https://doi.org/10.1038/sj.bjc.6603358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10689-007-9150-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042182776", 
          "https://doi.org/10.1007/s10689-007-9150-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2350-8-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042243193", 
          "https://doi.org/10.1186/1471-2350-8-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044960408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2008.20.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046955449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049149973", 
          "https://doi.org/10.1186/bcr2576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053035976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1088759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2002.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-145-1-200607040-00128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073708765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-147-7-200710020-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073709509"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "The BRCAPRO model estimates carrier probabilities for the BRCA1 and BRCA2 genes, and was recently enhanced to use estrogen receptor (ER) and progesterone receptor (PR) status of breast cancer. No independent assessment of the added value of these markers exists. Moreover, earlier versions of BRCAPRO did not use human epidermal growth factor receptor 2 (Her-2/neu) status of breast cancer. Here, we incorporate Her-2/neu in BRCAPRO and validate all the markers. We trained the enhanced model on 406 germline tested individuals, and validated on a separate clinical cohort of 796 individuals for whom test results and family history are available. For model-building, we estimated joint probabilities of ER, PR, and Her-2/neu status for carriers and non-carriers of BRCA1/2 mutations. For validation, we obtained BRCAPRO predictions with and without markers. We calculated area under the receiver operating characteristic curve (AUC), sensitivity, specificity, predictive values, and correct reclassification rates. The AUC for predicting BRCA1 status among individuals who are carriers of at least one mutation improved when ER and PR were used. The AUC for predicting the presence of either mutation improved when Her-2/neu was added. Use of markers also produced highly significant correct reclassification improvements in both cases. Breast tumor markers are useful for prediction of BRCA1/2 mutation status. ER and PR improve discrimination between BRCA1 and BRCA2 mutation carriers while Her-2/neu helps discriminate between carriers and non-carriers, particularly among women who are ER positive and Her-2/neu negative. These results support the use of the enhanced version of BRCAPRO in clinical settings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-012-1958-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2435487", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "Assessing the added value of breast tumor markers in genetic risk prediction model BRCAPRO", 
    "pagination": "347-355", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03ec3abae39187cb6c297224297b58045eebb22cdabb22034ea986c3074e9c9e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22270937"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-012-1958-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000823396"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-012-1958-z", 
      "https://app.dimensions.ai/details/publication/pub.1000823396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000479.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10549-012-1958-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-012-1958-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-012-1958-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-012-1958-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-012-1958-z'


 

This table displays all metadata directly associated to this object as RDF triples.

309 TRIPLES      21 PREDICATES      76 URIs      45 LITERALS      33 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-012-1958-z schema:about N060b50ee467c4a5f80f62518e0e7ee37
2 N1fa20da4d37e4251b89b8d9212a6131d
3 N427664e1ad3349b1af7ebfeb0dae9694
4 N47a1cef7c747481a9157849e68c37583
5 N5b08b59829a84921a79935f333268a32
6 N5e5c754c05684c66961c7ccef9543da4
7 N7831ce3e345a46dfa91305b280ffee4b
8 N830d93867f5743edb18398f6f2625a5f
9 N838fa20caa7f4a2c8f6578802b443d0c
10 N8bf8df160b2c4563ad571d1f3f58a090
11 N95a353c332464b49bae4d431f0b92216
12 N9f2b709dd2ae4211a9c75ee145f22fbd
13 Na5b5d7afacbf49548dd31faad1f80e6b
14 Nbe0758237b544d228cba4ad04ed57737
15 Ncde486e4872e44b79665c457c6213550
16 Ncfbb5c77a38f415b988a6dc404ade300
17 Ndd010cf6afc04ba7b3840a35c837c815
18 Ne0aa37b5412a48e0b860bd59eff04c9a
19 Ne1ebd46e05d544248a7900ec31788dcd
20 Ne5858d2633b147028464593a9e427b60
21 Ne64a849f4057496e97a35d23fa81e66d
22 Nf922879d35bc4bf195bf505f82b23754
23 Nf985a8ed345849f28894b86cee5e4300
24 Nfacfd88fe06d405c9f2f9594f4116d5b
25 anzsrc-for:11
26 anzsrc-for:1112
27 schema:author N0ee8a4263a5a4962ba8c9c435ae20c17
28 schema:citation sg:pub.10.1007/s10689-007-9150-z
29 sg:pub.10.1038/sj.bjc.6603358
30 sg:pub.10.1186/1471-2350-8-13
31 sg:pub.10.1186/bcr1866
32 sg:pub.10.1186/bcr2576
33 https://doi.org/10.1002/sim.2929
34 https://doi.org/10.1002/sim.3302
35 https://doi.org/10.1002/sim.4085
36 https://doi.org/10.1016/0197-2456(86)90046-2
37 https://doi.org/10.1086/301670
38 https://doi.org/10.1086/375033
39 https://doi.org/10.1093/jnci/94.11.844
40 https://doi.org/10.1126/science.1088759
41 https://doi.org/10.1136/jmg.2003.013623
42 https://doi.org/10.1158/1078-0432.ccr-04-2424
43 https://doi.org/10.1200/jco.2002.09.023
44 https://doi.org/10.1200/jco.2005.01.9737
45 https://doi.org/10.1200/jco.2005.02.2368
46 https://doi.org/10.1200/jco.2008.16.6231
47 https://doi.org/10.1200/jco.2008.20.6896
48 https://doi.org/10.2202/1544-6115.1063
49 https://doi.org/10.7326/0003-4819-145-1-200607040-00128
50 https://doi.org/10.7326/0003-4819-147-7-200710020-00002
51 schema:datePublished 2012-05
52 schema:datePublishedReg 2012-05-01
53 schema:description The BRCAPRO model estimates carrier probabilities for the BRCA1 and BRCA2 genes, and was recently enhanced to use estrogen receptor (ER) and progesterone receptor (PR) status of breast cancer. No independent assessment of the added value of these markers exists. Moreover, earlier versions of BRCAPRO did not use human epidermal growth factor receptor 2 (Her-2/neu) status of breast cancer. Here, we incorporate Her-2/neu in BRCAPRO and validate all the markers. We trained the enhanced model on 406 germline tested individuals, and validated on a separate clinical cohort of 796 individuals for whom test results and family history are available. For model-building, we estimated joint probabilities of ER, PR, and Her-2/neu status for carriers and non-carriers of BRCA1/2 mutations. For validation, we obtained BRCAPRO predictions with and without markers. We calculated area under the receiver operating characteristic curve (AUC), sensitivity, specificity, predictive values, and correct reclassification rates. The AUC for predicting BRCA1 status among individuals who are carriers of at least one mutation improved when ER and PR were used. The AUC for predicting the presence of either mutation improved when Her-2/neu was added. Use of markers also produced highly significant correct reclassification improvements in both cases. Breast tumor markers are useful for prediction of BRCA1/2 mutation status. ER and PR improve discrimination between BRCA1 and BRCA2 mutation carriers while Her-2/neu helps discriminate between carriers and non-carriers, particularly among women who are ER positive and Her-2/neu negative. These results support the use of the enhanced version of BRCAPRO in clinical settings.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N9b79603000124363ae1c23d8dfc9201a
58 Nd84394b4a5454844980f5b11df9eef11
59 sg:journal.1092777
60 schema:name Assessing the added value of breast tumor markers in genetic risk prediction model BRCAPRO
61 schema:pagination 347-355
62 schema:productId N48f43f116f554791b30e933e577eed5b
63 N69ca38631d62443882955bc324c6f3a3
64 N87bac23fb38a4266a37196211e597b7a
65 N9f69da4c595645179ec57dc8a1b9ba7b
66 Nd203144abefc422da67332eca52c65da
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000823396
68 https://doi.org/10.1007/s10549-012-1958-z
69 schema:sdDatePublished 2019-04-10T13:04
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nebeab2b91ff34348830ed681dd9a8c18
72 schema:url http://link.springer.com/10.1007/s10549-012-1958-z
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N060b50ee467c4a5f80f62518e0e7ee37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Middle Aged
78 rdf:type schema:DefinedTerm
79 N0ee8a4263a5a4962ba8c9c435ae20c17 rdf:first sg:person.01212700777.53
80 rdf:rest N2323c463bbe649d79f0fcb4ea6424445
81 N127dd10aa7004854b95245446d455ff4 rdf:first sg:person.0763665266.91
82 rdf:rest rdf:nil
83 N1fa20da4d37e4251b89b8d9212a6131d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Male
85 rdf:type schema:DefinedTerm
86 N2323c463bbe649d79f0fcb4ea6424445 rdf:first sg:person.0765244203.66
87 rdf:rest Nd3a1bebe5c6b48d6af6802b4ae82b411
88 N3883fb3cd4164fb288900bceb6531e3d rdf:first sg:person.016476556517.19
89 rdf:rest N3a94f474ffb3466d9b1d0295dcc8a9e4
90 N3a94f474ffb3466d9b1d0295dcc8a9e4 rdf:first sg:person.013765676317.14
91 rdf:rest Nfa91d25da96d496cb6f21cee5c3d386d
92 N3b1a1349d773416bb7167b1a1bb6c116 rdf:first sg:person.01215721203.23
93 rdf:rest Nf2b5e157f9b140f58b4ad4b3723ab600
94 N427664e1ad3349b1af7ebfeb0dae9694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Multivariate Analysis
96 rdf:type schema:DefinedTerm
97 N47a1cef7c747481a9157849e68c37583 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name ROC Curve
99 rdf:type schema:DefinedTerm
100 N48f43f116f554791b30e933e577eed5b schema:name nlm_unique_id
101 schema:value 8111104
102 rdf:type schema:PropertyValue
103 N5b08b59829a84921a79935f333268a32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Models, Genetic
105 rdf:type schema:DefinedTerm
106 N5e5c754c05684c66961c7ccef9543da4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Ovarian Neoplasms
108 rdf:type schema:DefinedTerm
109 N69ca38631d62443882955bc324c6f3a3 schema:name readcube_id
110 schema:value 03ec3abae39187cb6c297224297b58045eebb22cdabb22034ea986c3074e9c9e
111 rdf:type schema:PropertyValue
112 N7831ce3e345a46dfa91305b280ffee4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Risk Factors
114 rdf:type schema:DefinedTerm
115 N830d93867f5743edb18398f6f2625a5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name BRCA2 Protein
117 rdf:type schema:DefinedTerm
118 N838fa20caa7f4a2c8f6578802b443d0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 N87bac23fb38a4266a37196211e597b7a schema:name doi
122 schema:value 10.1007/s10549-012-1958-z
123 rdf:type schema:PropertyValue
124 N8bf8df160b2c4563ad571d1f3f58a090 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Breast Neoplasms
126 rdf:type schema:DefinedTerm
127 N95a353c332464b49bae4d431f0b92216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Heterozygote
129 rdf:type schema:DefinedTerm
130 N9b79603000124363ae1c23d8dfc9201a schema:volumeNumber 133
131 rdf:type schema:PublicationVolume
132 N9f2b709dd2ae4211a9c75ee145f22fbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Adult
134 rdf:type schema:DefinedTerm
135 N9f69da4c595645179ec57dc8a1b9ba7b schema:name pubmed_id
136 schema:value 22270937
137 rdf:type schema:PropertyValue
138 Na5b5d7afacbf49548dd31faad1f80e6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Receptors, Estrogen
140 rdf:type schema:DefinedTerm
141 Nbe0758237b544d228cba4ad04ed57737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Bayes Theorem
143 rdf:type schema:DefinedTerm
144 Ncde486e4872e44b79665c457c6213550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Pedigree
146 rdf:type schema:DefinedTerm
147 Ncfbb5c77a38f415b988a6dc404ade300 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Female
149 rdf:type schema:DefinedTerm
150 Nd203144abefc422da67332eca52c65da schema:name dimensions_id
151 schema:value pub.1000823396
152 rdf:type schema:PropertyValue
153 Nd3a1bebe5c6b48d6af6802b4ae82b411 rdf:first sg:person.01003562505.03
154 rdf:rest N3b1a1349d773416bb7167b1a1bb6c116
155 Nd84394b4a5454844980f5b11df9eef11 schema:issueNumber 1
156 rdf:type schema:PublicationIssue
157 Ndd010cf6afc04ba7b3840a35c837c815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Risk Assessment
159 rdf:type schema:DefinedTerm
160 Ne0aa37b5412a48e0b860bd59eff04c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Logistic Models
162 rdf:type schema:DefinedTerm
163 Ne1ebd46e05d544248a7900ec31788dcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Area Under Curve
165 rdf:type schema:DefinedTerm
166 Ne5858d2633b147028464593a9e427b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Receptor, ErbB-2
168 rdf:type schema:DefinedTerm
169 Ne64a849f4057496e97a35d23fa81e66d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Breast Neoplasms, Male
171 rdf:type schema:DefinedTerm
172 Nebeab2b91ff34348830ed681dd9a8c18 schema:name Springer Nature - SN SciGraph project
173 rdf:type schema:Organization
174 Nf2b5e157f9b140f58b4ad4b3723ab600 rdf:first sg:person.01350634647.09
175 rdf:rest N3883fb3cd4164fb288900bceb6531e3d
176 Nf922879d35bc4bf195bf505f82b23754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Biomarkers, Tumor
178 rdf:type schema:DefinedTerm
179 Nf985a8ed345849f28894b86cee5e4300 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name BRCA1 Protein
181 rdf:type schema:DefinedTerm
182 Nfa91d25da96d496cb6f21cee5c3d386d rdf:first sg:person.01213127733.91
183 rdf:rest N127dd10aa7004854b95245446d455ff4
184 Nfacfd88fe06d405c9f2f9594f4116d5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Receptors, Progesterone
186 rdf:type schema:DefinedTerm
187 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
188 schema:name Medical and Health Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
191 schema:name Oncology and Carcinogenesis
192 rdf:type schema:DefinedTerm
193 sg:grant.2435487 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-012-1958-z
194 rdf:type schema:MonetaryGrant
195 sg:journal.1092777 schema:issn 0167-6806
196 1573-7217
197 schema:name Breast Cancer Research and Treatment
198 rdf:type schema:Periodical
199 sg:person.01003562505.03 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
200 schema:familyName Blackford
201 schema:givenName Amanda
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003562505.03
203 rdf:type schema:Person
204 sg:person.01212700777.53 schema:affiliation https://www.grid.ac/institutes/grid.266871.c
205 schema:familyName Biswas
206 schema:givenName Swati
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212700777.53
208 rdf:type schema:Person
209 sg:person.01213127733.91 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
210 schema:familyName Parmigiani
211 schema:givenName Giovanni
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91
213 rdf:type schema:Person
214 sg:person.01215721203.23 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
215 schema:familyName Barrera
216 schema:givenName Angelica M. Gutierrez
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215721203.23
218 rdf:type schema:Person
219 sg:person.01350634647.09 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
220 schema:familyName Ready
221 schema:givenName Kaylene
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350634647.09
223 rdf:type schema:Person
224 sg:person.013765676317.14 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
225 schema:familyName Amos
226 schema:givenName Christopher I.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013765676317.14
228 rdf:type schema:Person
229 sg:person.016476556517.19 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
230 schema:familyName Lu
231 schema:givenName Karen
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016476556517.19
233 rdf:type schema:Person
234 sg:person.0763665266.91 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
235 schema:familyName Arun
236 schema:givenName Banu
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763665266.91
238 rdf:type schema:Person
239 sg:person.0765244203.66 schema:affiliation https://www.grid.ac/institutes/grid.266871.c
240 schema:familyName Tankhiwale
241 schema:givenName Neelam
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765244203.66
243 rdf:type schema:Person
244 sg:pub.10.1007/s10689-007-9150-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042182776
245 https://doi.org/10.1007/s10689-007-9150-z
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/sj.bjc.6603358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041506986
248 https://doi.org/10.1038/sj.bjc.6603358
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1471-2350-8-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042243193
251 https://doi.org/10.1186/1471-2350-8-13
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/bcr1866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029115431
254 https://doi.org/10.1186/bcr1866
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/bcr2576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049149973
257 https://doi.org/10.1186/bcr2576
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1002/sim.2929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044960408
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1002/sim.3302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019926111
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1002/sim.4085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037258459
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/0197-2456(86)90046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034546744
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1086/301670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007199629
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1086/375033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331489
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1093/jnci/94.11.844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812310
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1126/science.1088759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448491
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1136/jmg.2003.013623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040929977
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1158/1078-0432.ccr-04-2424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030469170
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1200/jco.2002.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203120
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1200/jco.2005.01.9737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003239502
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1200/jco.2005.02.2368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038573680
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1200/jco.2008.16.6231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022469883
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1200/jco.2008.20.6896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046955449
288 rdf:type schema:CreativeWork
289 https://doi.org/10.2202/1544-6115.1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053035976
290 rdf:type schema:CreativeWork
291 https://doi.org/10.7326/0003-4819-145-1-200607040-00128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073708765
292 rdf:type schema:CreativeWork
293 https://doi.org/10.7326/0003-4819-147-7-200710020-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709509
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
296 schema:name Division of Biostatistics, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
299 schema:name Department of Breast Medical Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
300 Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
301 Department of Gynecologic Oncology and Clinical Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.266871.c schema:alternateName University of North Texas Health Science Center
304 schema:name Department of Biostatistics, School of Public Health, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, 76107-2699, Fort Worth, TX, USA
305 rdf:type schema:Organization
306 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
307 schema:name Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA
308 Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
309 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...