Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Albane Frati, Elisabeth Chereau, Charles Coutant, Corinne Bezu, Martine Antoine, Jocelyne Chopier, Emile Daraï, Serge Uzan, Joseph Gligorov, Roman Rouzier

ABSTRACT

The aim of this study is to compare two published nomograms, the "Institut Gustave Roussy/M.D. Anderson Cancer Center" (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed. More... »

PAGES

601-607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0

DOI

http://dx.doi.org/10.1007/s10549-011-1897-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020753637

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22160638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal, Humanized", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotherapy, Adjuvant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Discriminant Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mastectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nomograms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paris", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taxoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trastuzumab", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frati", 
        "givenName": "Albane", 
        "id": "sg:person.01152433143.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152433143.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chereau", 
        "givenName": "Elisabeth", 
        "id": "sg:person.0755060031.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060031.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coutant", 
        "givenName": "Charles", 
        "id": "sg:person.01325213233.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325213233.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bezu", 
        "givenName": "Corinne", 
        "id": "sg:person.0601607133.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601607133.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Anatomo-Pathology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antoine", 
        "givenName": "Martine", 
        "id": "sg:person.01351724057.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724057.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chopier", 
        "givenName": "Jocelyne", 
        "id": "sg:person.01037345350.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037345350.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dara\u00ef", 
        "givenName": "Emile", 
        "id": "sg:person.01166567564.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uzan", 
        "givenName": "Serge", 
        "id": "sg:person.0763265400.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763265400.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Oncology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gligorov", 
        "givenName": "Joseph", 
        "id": "sg:person.01304024657.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304024657.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzier", 
        "givenName": "Roman", 
        "id": "sg:person.01101754741.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejca.2010.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.02.5023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009293740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015144184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789608", 
          "https://doi.org/10.1038/sj.bjc.6602235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789608", 
          "https://doi.org/10.1038/sj.bjc.6602235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030681220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037463076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/dji021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042544349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.10458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044689120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.02.6914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045440787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.0235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050681304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/45.3-4.562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.20.5.1304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064202853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1999.17.2.460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074265640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2001.19.22.4224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074954337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-2-8178-0249-7_107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089822796", 
          "https://doi.org/10.1007/978-2-8178-0249-7_107"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "The aim of this study is to compare two published nomograms, the \"Institut Gustave Roussy/M.D. Anderson Cancer Center\" (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-011-1897-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "name": "Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors", 
    "pagination": "601-607", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62e2e721881b86b833ae69f5aca3a8961963aff606b41acde5ac500f805882e8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22160638"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-011-1897-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020753637"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-011-1897-0", 
      "https://app.dimensions.ai/details/publication/pub.1020753637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10549-011-1897-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'


 

This table displays all metadata directly associated to this object as RDF triples.

302 TRIPLES      21 PREDICATES      69 URIs      46 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-011-1897-0 schema:about N014d52ad12cc48ac85df81ad21e9871c
2 N1f7457d2ddfd4f8581c1e72da33a3c67
3 N25d61f9e2bd743a9a167516f3c69cf0a
4 N429038bcd9174dfd8315c3941c9b0a6d
5 N44e88c70262d4f728da6e558529fa676
6 N5068a0a546714f44966c013549bfa64d
7 N6290999a9c6f4854b10ffaf5d2ffaeb2
8 N6b1ac32302744ddb8d59c693542bc638
9 N6be5581320fa4af8b81629bf972062d7
10 N6ec0658716614edfa36ac28d6582af04
11 N81529b02c3664ebcb910d16e6eace0e2
12 N84a2936ff009492e84754cd741ff42bb
13 N88427891c2e34b75bcf2b9089ac2bc3f
14 N88b7f24386904757a0668deaacd9ca85
15 Na5978ef8c1fe44c0b535522accb8a6a9
16 Na9285f82ef9f4af682675956f0648016
17 Naec2454d10bd42f0afc7068b4cdaeb4f
18 Nb818c5dbf7884592b8f90c63bb0a9bb3
19 Nb8d29d0f1dce4f34a5d0ff6e1f3dadc4
20 Nb923afe320f34a9b88c35c46124f0496
21 Nc5c29e2c5a81493eb0d137808ef03720
22 Nc6a68753d6414fc7a8e50d086a3f8157
23 Nc8674398adf7465d8287d0633fff7a54
24 Nebd48685040c4cb6ad10cb59925b2d3d
25 Nf39749c077c44f3c8c6c21a74a32ef12
26 anzsrc-for:11
27 anzsrc-for:1112
28 schema:author N129dd3763faf40e69053fa0787258e22
29 schema:citation sg:pub.10.1007/978-2-8178-0249-7_107
30 sg:pub.10.1038/sj.bjc.6602235
31 https://doi.org/10.1002/cncr.10458
32 https://doi.org/10.1002/cncr.20298
33 https://doi.org/10.1002/cncr.20491
34 https://doi.org/10.1016/j.ejca.2010.04.008
35 https://doi.org/10.1093/biomet/45.3-4.562
36 https://doi.org/10.1093/jnci/dji021
37 https://doi.org/10.1200/jco.1999.17.2.460
38 https://doi.org/10.1200/jco.20.5.1304
39 https://doi.org/10.1200/jco.2001.19.22.4224
40 https://doi.org/10.1200/jco.2005.01.2898
41 https://doi.org/10.1200/jco.2005.02.5023
42 https://doi.org/10.1200/jco.2005.02.6914
43 https://doi.org/10.1200/jco.2007.15.0235
44 schema:datePublished 2012-04
45 schema:datePublishedReg 2012-04-01
46 schema:description The aim of this study is to compare two published nomograms, the "Institut Gustave Roussy/M.D. Anderson Cancer Center" (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N00f524881f114f26976aded10304fab2
51 Nadc798f7cb704a829834b74217b85b72
52 sg:journal.1092777
53 schema:name Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors
54 schema:pagination 601-607
55 schema:productId N277c2f31bf0943f5b1d5c21449da3283
56 N69d47dd64c684b5dab82611cf6cbfdef
57 N8758b55805414beab2ace3a38b9dfc31
58 Nc7238853443b48e196cb17c25c5b60bc
59 Ne13eedacd5384d8388829ef1a86e67a7
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020753637
61 https://doi.org/10.1007/s10549-011-1897-0
62 schema:sdDatePublished 2019-04-10T17:31
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nee2c6948169b432b9fcaf6c7a73b12e4
65 schema:url http://link.springer.com/10.1007%2Fs10549-011-1897-0
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N00f524881f114f26976aded10304fab2 schema:issueNumber 2
70 rdf:type schema:PublicationIssue
71 N014d52ad12cc48ac85df81ad21e9871c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Mastectomy
73 rdf:type schema:DefinedTerm
74 N129dd3763faf40e69053fa0787258e22 rdf:first sg:person.01152433143.34
75 rdf:rest N9419bd88082f4656aa932e4ebd0bbbb9
76 N1f7457d2ddfd4f8581c1e72da33a3c67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Chemotherapy, Adjuvant
78 rdf:type schema:DefinedTerm
79 N2179688882fd49939eae87b58b084cb2 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
80 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
81 rdf:type schema:Organization
82 N25d61f9e2bd743a9a167516f3c69cf0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Treatment Outcome
84 rdf:type schema:DefinedTerm
85 N277c2f31bf0943f5b1d5c21449da3283 schema:name pubmed_id
86 schema:value 22160638
87 rdf:type schema:PropertyValue
88 N2a0c213e9a7347eebc0b2ea5888357d2 rdf:first sg:person.0601607133.26
89 rdf:rest Nf15c0f1af33441509f572d3c6d704b75
90 N3190ee106f2f49a983aebcb19f8d1361 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
91 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
92 rdf:type schema:Organization
93 N429038bcd9174dfd8315c3941c9b0a6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Humans
95 rdf:type schema:DefinedTerm
96 N44e88c70262d4f728da6e558529fa676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Nomograms
98 rdf:type schema:DefinedTerm
99 N47cdfefbffac4077bf862412b7e37866 schema:name Department of Radiology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
100 rdf:type schema:Organization
101 N4b062f97f1324bf891dca12ee1f1b3e0 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
102 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
103 rdf:type schema:Organization
104 N5068a0a546714f44966c013549bfa64d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Probability
106 rdf:type schema:DefinedTerm
107 N544222c84a77425fb67f2857d7bb0bbd rdf:first sg:person.01166567564.74
108 rdf:rest Nb9cb2cb9a64240b6a0d6bbd27f672e6c
109 N6290999a9c6f4854b10ffaf5d2ffaeb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Taxoids
111 rdf:type schema:DefinedTerm
112 N69d47dd64c684b5dab82611cf6cbfdef schema:name dimensions_id
113 schema:value pub.1020753637
114 rdf:type schema:PropertyValue
115 N6b1ac32302744ddb8d59c693542bc638 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Receptor, ErbB-2
117 rdf:type schema:DefinedTerm
118 N6be5581320fa4af8b81629bf972062d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Female
120 rdf:type schema:DefinedTerm
121 N6ec0658716614edfa36ac28d6582af04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Paris
123 rdf:type schema:DefinedTerm
124 N79b181eded37462496e4f200705ab078 rdf:first sg:person.01101754741.17
125 rdf:rest rdf:nil
126 N81529b02c3664ebcb910d16e6eace0e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Trastuzumab
128 rdf:type schema:DefinedTerm
129 N84a2936ff009492e84754cd741ff42bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Middle Aged
131 rdf:type schema:DefinedTerm
132 N855fa8458b9a440e95f199f690e88a05 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
133 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
134 rdf:type schema:Organization
135 N8758b55805414beab2ace3a38b9dfc31 schema:name readcube_id
136 schema:value 62e2e721881b86b833ae69f5aca3a8961963aff606b41acde5ac500f805882e8
137 rdf:type schema:PropertyValue
138 N88049aacd1124fcc9924415a27b020f1 schema:name Department of Anatomo-Pathology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
139 rdf:type schema:Organization
140 N88427891c2e34b75bcf2b9089ac2bc3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neoadjuvant Therapy
142 rdf:type schema:DefinedTerm
143 N88b7f24386904757a0668deaacd9ca85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Decision Support Techniques
145 rdf:type schema:DefinedTerm
146 N9419bd88082f4656aa932e4ebd0bbbb9 rdf:first sg:person.0755060031.11
147 rdf:rest Na6ffc0fe5d7d4e429bca35152af9dbb4
148 N9e3a69183afb4068a2878b94c65bfbcd rdf:first sg:person.01304024657.30
149 rdf:rest N79b181eded37462496e4f200705ab078
150 Na5978ef8c1fe44c0b535522accb8a6a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Adult
152 rdf:type schema:DefinedTerm
153 Na6ffc0fe5d7d4e429bca35152af9dbb4 rdf:first sg:person.01325213233.35
154 rdf:rest N2a0c213e9a7347eebc0b2ea5888357d2
155 Na9285f82ef9f4af682675956f0648016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Breast Neoplasms
157 rdf:type schema:DefinedTerm
158 Nadc798f7cb704a829834b74217b85b72 schema:volumeNumber 132
159 rdf:type schema:PublicationVolume
160 Naec2454d10bd42f0afc7068b4cdaeb4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Biomarkers, Tumor
162 rdf:type schema:DefinedTerm
163 Nb818c5dbf7884592b8f90c63bb0a9bb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Antineoplastic Combined Chemotherapy Protocols
165 rdf:type schema:DefinedTerm
166 Nb8d29d0f1dce4f34a5d0ff6e1f3dadc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Discriminant Analysis
168 rdf:type schema:DefinedTerm
169 Nb923afe320f34a9b88c35c46124f0496 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Chi-Square Distribution
171 rdf:type schema:DefinedTerm
172 Nb9cb2cb9a64240b6a0d6bbd27f672e6c rdf:first sg:person.0763265400.45
173 rdf:rest N9e3a69183afb4068a2878b94c65bfbcd
174 Nc58bef1672564575a985daff33220148 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
175 rdf:type schema:Organization
176 Nc5c29e2c5a81493eb0d137808ef03720 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Antibodies, Monoclonal, Humanized
178 rdf:type schema:DefinedTerm
179 Nc67c3dabbac945ed99af19a5ef087e3f schema:name Department of Medical Oncology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
180 rdf:type schema:Organization
181 Nc6a68753d6414fc7a8e50d086a3f8157 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Aged
183 rdf:type schema:DefinedTerm
184 Nc7238853443b48e196cb17c25c5b60bc schema:name nlm_unique_id
185 schema:value 8111104
186 rdf:type schema:PropertyValue
187 Nc8674398adf7465d8287d0633fff7a54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name ROC Curve
189 rdf:type schema:DefinedTerm
190 Ncdf23c3a96ed464ebde3fd5be1cc7e91 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
191 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
192 rdf:type schema:Organization
193 Ne13eedacd5384d8388829ef1a86e67a7 schema:name doi
194 schema:value 10.1007/s10549-011-1897-0
195 rdf:type schema:PropertyValue
196 Ne8bc1bc49cbe41918483ad9ffa47aa2d schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
197 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
198 rdf:type schema:Organization
199 Nea77533c68da4ce8a3189b5dcccacfc8 rdf:first sg:person.01037345350.48
200 rdf:rest N544222c84a77425fb67f2857d7bb0bbd
201 Nebd48685040c4cb6ad10cb59925b2d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Logistic Models
203 rdf:type schema:DefinedTerm
204 Nee2c6948169b432b9fcaf6c7a73b12e4 schema:name Springer Nature - SN SciGraph project
205 rdf:type schema:Organization
206 Nf15c0f1af33441509f572d3c6d704b75 rdf:first sg:person.01351724057.36
207 rdf:rest Nea77533c68da4ce8a3189b5dcccacfc8
208 Nf39749c077c44f3c8c6c21a74a32ef12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Aged, 80 and over
210 rdf:type schema:DefinedTerm
211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
212 schema:name Medical and Health Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
215 schema:name Oncology and Carcinogenesis
216 rdf:type schema:DefinedTerm
217 sg:journal.1092777 schema:issn 0167-6806
218 1573-7217
219 schema:name Breast Cancer Research and Treatment
220 rdf:type schema:Periodical
221 sg:person.01037345350.48 schema:affiliation N47cdfefbffac4077bf862412b7e37866
222 schema:familyName Chopier
223 schema:givenName Jocelyne
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037345350.48
225 rdf:type schema:Person
226 sg:person.01101754741.17 schema:affiliation N3190ee106f2f49a983aebcb19f8d1361
227 schema:familyName Rouzier
228 schema:givenName Roman
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17
230 rdf:type schema:Person
231 sg:person.01152433143.34 schema:affiliation Ncdf23c3a96ed464ebde3fd5be1cc7e91
232 schema:familyName Frati
233 schema:givenName Albane
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152433143.34
235 rdf:type schema:Person
236 sg:person.01166567564.74 schema:affiliation Ne8bc1bc49cbe41918483ad9ffa47aa2d
237 schema:familyName Daraï
238 schema:givenName Emile
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74
240 rdf:type schema:Person
241 sg:person.01304024657.30 schema:affiliation Nc67c3dabbac945ed99af19a5ef087e3f
242 schema:familyName Gligorov
243 schema:givenName Joseph
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304024657.30
245 rdf:type schema:Person
246 sg:person.01325213233.35 schema:affiliation N2179688882fd49939eae87b58b084cb2
247 schema:familyName Coutant
248 schema:givenName Charles
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325213233.35
250 rdf:type schema:Person
251 sg:person.01351724057.36 schema:affiliation N88049aacd1124fcc9924415a27b020f1
252 schema:familyName Antoine
253 schema:givenName Martine
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724057.36
255 rdf:type schema:Person
256 sg:person.0601607133.26 schema:affiliation Nc58bef1672564575a985daff33220148
257 schema:familyName Bezu
258 schema:givenName Corinne
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601607133.26
260 rdf:type schema:Person
261 sg:person.0755060031.11 schema:affiliation N855fa8458b9a440e95f199f690e88a05
262 schema:familyName Chereau
263 schema:givenName Elisabeth
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060031.11
265 rdf:type schema:Person
266 sg:person.0763265400.45 schema:affiliation N4b062f97f1324bf891dca12ee1f1b3e0
267 schema:familyName Uzan
268 schema:givenName Serge
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763265400.45
270 rdf:type schema:Person
271 sg:pub.10.1007/978-2-8178-0249-7_107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089822796
272 https://doi.org/10.1007/978-2-8178-0249-7_107
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/sj.bjc.6602235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789608
275 https://doi.org/10.1038/sj.bjc.6602235
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1002/cncr.10458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044689120
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1002/cncr.20298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030681220
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1002/cncr.20491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015144184
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/j.ejca.2010.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176410
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/biomet/45.3-4.562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416773
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1093/jnci/dji021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544349
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1200/jco.1999.17.2.460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074265640
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1200/jco.20.5.1304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064202853
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1200/jco.2001.19.22.4224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074954337
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1200/jco.2005.01.2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037463076
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1200/jco.2005.02.5023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009293740
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1200/jco.2005.02.6914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045440787
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1200/jco.2007.15.0235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050681304
302 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...