Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12-09

AUTHORS

Albane Frati, Elisabeth Chereau, Charles Coutant, Corinne Bezu, Martine Antoine, Jocelyne Chopier, Emile Daraï, Serge Uzan, Joseph Gligorov, Roman Rouzier

ABSTRACT

The aim of this study is to compare two published nomograms, the “Institut Gustave Roussy/M.D. Anderson Cancer Center” (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed. More... »

PAGES

601-607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0

DOI

http://dx.doi.org/10.1007/s10549-011-1897-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020753637

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22160638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal, Humanized", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotherapy, Adjuvant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Discriminant Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mastectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nomograms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paris", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taxoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trastuzumab", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frati", 
        "givenName": "Albane", 
        "id": "sg:person.01152433143.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152433143.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chereau", 
        "givenName": "Elisabeth", 
        "id": "sg:person.0755060031.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060031.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coutant", 
        "givenName": "Charles", 
        "id": "sg:person.01325213233.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325213233.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bezu", 
        "givenName": "Corinne", 
        "id": "sg:person.0601607133.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601607133.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anatomo-Pathology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Anatomo-Pathology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antoine", 
        "givenName": "Martine", 
        "id": "sg:person.01351724057.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724057.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chopier", 
        "givenName": "Jocelyne", 
        "id": "sg:person.01037345350.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037345350.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dara\u00ef", 
        "givenName": "Emile", 
        "id": "sg:person.01166567564.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uzan", 
        "givenName": "Serge", 
        "id": "sg:person.0763265400.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763265400.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Oncology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Medical Oncology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gligorov", 
        "givenName": "Joseph", 
        "id": "sg:person.01304024657.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304024657.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzier", 
        "givenName": "Roman", 
        "id": "sg:person.01101754741.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-2-8178-0249-7_107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089822796", 
          "https://doi.org/10.1007/978-2-8178-0249-7_107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789608", 
          "https://doi.org/10.1038/sj.bjc.6602235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-09", 
    "datePublishedReg": "2011-12-09", 
    "description": "The aim of this study is to compare two published nomograms, the \u201cInstitut Gustave Roussy/M.D. Anderson Cancer Center\u201d (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P\u00a0=\u00a00.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P\u00a0=\u00a00.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10549-011-1897-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "keywords": [
      "pathologic complete response", 
      "preoperative chemotherapy", 
      "HER2-positive patients", 
      "complete response", 
      "HER2-positive tumors", 
      "M.D. Anderson Cancer Center", 
      "Anderson Cancer Center", 
      "HER2-negative population", 
      "pCR rate", 
      "neoadjuvant chemotherapy", 
      "Cancer Center", 
      "specific nomogram", 
      "HER2 status", 
      "breast carcinoma", 
      "breast cancer", 
      "independent cohort", 
      "chemotherapy", 
      "trastuzumab", 
      "patients", 
      "specific predictors", 
      "nomogram", 
      "specific populations", 
      "ROC curve", 
      "significant differences", 
      "tumors", 
      "whole population", 
      "AUC", 
      "predictors", 
      "population", 
      "MDACC", 
      "carcinoma", 
      "cohort", 
      "taxanes", 
      "cancer", 
      "response", 
      "outcomes", 
      "status", 
      "percent", 
      "aim", 
      "evidence", 
      "differences", 
      "study", 
      "center", 
      "rate", 
      "data", 
      "impact", 
      "discrimination", 
      "comparison", 
      "area", 
      "curves", 
      "respect", 
      "probability", 
      "prediction", 
      "model performance", 
      "performance", 
      "calibration", 
      "rate prediction", 
      "Institut Gustave Roussy/M.D. Anderson Cancer Center", 
      "Gustave Roussy/M.D. Anderson Cancer Center", 
      "Roussy/M.D. Anderson Cancer Center", 
      "Colleoni nomograms", 
      "IGR/MDACC nomogram", 
      "MDACC nomogram", 
      "IGR/MDACC", 
      "probability of pCR"
    ], 
    "name": "Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors", 
    "pagination": "601-607", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020753637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-011-1897-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22160638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-011-1897-0", 
      "https://app.dimensions.ai/details/publication/pub.1020753637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_547.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10549-011-1897-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      22 PREDICATES      118 URIs      108 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-011-1897-0 schema:about N082e9ca91ebf4f08822f8b8435a60698
2 N1a5c785d41614b34ab6a3974218f6db0
3 N2484cce9551a4d38ab68055f6de279b8
4 N295c22bc3ba34a5c8fc37c69cea329a8
5 N29a9febcb3ae4b38bc2544fd08a18375
6 N32558cd06d8a4d5f8103d2375a240064
7 N375a86775f2d43a4aa4a5b771af203c5
8 N3ec36053ea2547adb97727e263dd65a1
9 N42e8a7a3e54b4ddeb6a493f50332c8d5
10 N54bd2c72dec34ea7ba9d6b4e92b15280
11 N665fb4cf78124c1c8d4a9401ce00d949
12 N6b5c9d6ba48d4ba0ad301bfdd02690cb
13 N6c2564e4232e4dbeae31e056fc9fac42
14 N6d90f561dc9241c28aef48e3849189d5
15 N6dc202fe1480428092bb32ff499146f2
16 N701e0ceaadf5462ab496d0d55fd1ebef
17 N7510194c74d041c3bd58266e560f17e6
18 N7b2a887356de488f84dcd3fdb571ec9e
19 N8512af7a72964c5387a24183341ce9d6
20 N9a09d862b9c646f2801f480d079d7be6
21 N9a8e745acf494e768791d0578936415a
22 Nc89c5ee179674de3932da31184a10059
23 Nc9811c569a524cfeb56913dfaec6f209
24 Ne65dd57b53374edc8d539c76590d3fb4
25 Nff716fe4ffe0484e8292c7634c13db79
26 anzsrc-for:11
27 anzsrc-for:1112
28 schema:author N18fccf5bd8c94bb2aa9d61d357c7c844
29 schema:citation sg:pub.10.1007/978-2-8178-0249-7_107
30 sg:pub.10.1038/sj.bjc.6602235
31 schema:datePublished 2011-12-09
32 schema:datePublishedReg 2011-12-09
33 schema:description The aim of this study is to compare two published nomograms, the “Institut Gustave Roussy/M.D. Anderson Cancer Center” (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed.
34 schema:genre article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N453516282c12497e897e39759783b037
38 N655cf8f6d5824d30b6caec7677dfe933
39 sg:journal.1092777
40 schema:keywords AUC
41 Anderson Cancer Center
42 Cancer Center
43 Colleoni nomograms
44 Gustave Roussy/M.D. Anderson Cancer Center
45 HER2 status
46 HER2-negative population
47 HER2-positive patients
48 HER2-positive tumors
49 IGR/MDACC
50 IGR/MDACC nomogram
51 Institut Gustave Roussy/M.D. Anderson Cancer Center
52 M.D. Anderson Cancer Center
53 MDACC
54 MDACC nomogram
55 ROC curve
56 Roussy/M.D. Anderson Cancer Center
57 aim
58 area
59 breast cancer
60 breast carcinoma
61 calibration
62 cancer
63 carcinoma
64 center
65 chemotherapy
66 cohort
67 comparison
68 complete response
69 curves
70 data
71 differences
72 discrimination
73 evidence
74 impact
75 independent cohort
76 model performance
77 neoadjuvant chemotherapy
78 nomogram
79 outcomes
80 pCR rate
81 pathologic complete response
82 patients
83 percent
84 performance
85 population
86 prediction
87 predictors
88 preoperative chemotherapy
89 probability
90 probability of pCR
91 rate
92 rate prediction
93 respect
94 response
95 significant differences
96 specific nomogram
97 specific populations
98 specific predictors
99 status
100 study
101 taxanes
102 trastuzumab
103 tumors
104 whole population
105 schema:name Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors
106 schema:pagination 601-607
107 schema:productId Nb1e89d5d11a942d787ac581ced7e0a09
108 Nfc5094d78a76484f8be1c3fa4af11208
109 Nfdf34fd00e5441d1a72f4e6c6d939b8e
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020753637
111 https://doi.org/10.1007/s10549-011-1897-0
112 schema:sdDatePublished 2021-11-01T18:16
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N1d9604f0b2754e109d27dbd7d32b6a1a
115 schema:url https://doi.org/10.1007/s10549-011-1897-0
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N05ff49529b21412aa8180f44466855a2 rdf:first sg:person.01351724057.36
120 rdf:rest N18af83e16a0d49808a529e95af8973d3
121 N082e9ca91ebf4f08822f8b8435a60698 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Nomograms
123 rdf:type schema:DefinedTerm
124 N1465b268bf5d4ee7afbb37dee2d2b4c5 rdf:first sg:person.01166567564.74
125 rdf:rest Nd01a98c8771349499692fbd067e1c2b8
126 N18af83e16a0d49808a529e95af8973d3 rdf:first sg:person.01037345350.48
127 rdf:rest N1465b268bf5d4ee7afbb37dee2d2b4c5
128 N18fccf5bd8c94bb2aa9d61d357c7c844 rdf:first sg:person.01152433143.34
129 rdf:rest Nb8a83a7e722d49cc9b1c91333d3858ad
130 N1a5c785d41614b34ab6a3974218f6db0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Probability
132 rdf:type schema:DefinedTerm
133 N1d9604f0b2754e109d27dbd7d32b6a1a schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 N2484cce9551a4d38ab68055f6de279b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Aged
137 rdf:type schema:DefinedTerm
138 N295c22bc3ba34a5c8fc37c69cea329a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Adult
140 rdf:type schema:DefinedTerm
141 N29a9febcb3ae4b38bc2544fd08a18375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Trastuzumab
143 rdf:type schema:DefinedTerm
144 N317d7f08a35f494cb8001f6d7733c1b5 rdf:first sg:person.0601607133.26
145 rdf:rest N05ff49529b21412aa8180f44466855a2
146 N32558cd06d8a4d5f8103d2375a240064 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Decision Support Techniques
148 rdf:type schema:DefinedTerm
149 N375a86775f2d43a4aa4a5b771af203c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Antineoplastic Combined Chemotherapy Protocols
151 rdf:type schema:DefinedTerm
152 N3ec36053ea2547adb97727e263dd65a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Middle Aged
154 rdf:type schema:DefinedTerm
155 N42e8a7a3e54b4ddeb6a493f50332c8d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Mastectomy
157 rdf:type schema:DefinedTerm
158 N453516282c12497e897e39759783b037 schema:volumeNumber 132
159 rdf:type schema:PublicationVolume
160 N54bd2c72dec34ea7ba9d6b4e92b15280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Biomarkers, Tumor
162 rdf:type schema:DefinedTerm
163 N5b0311f693f24278b6ef153a7cca60c5 rdf:first sg:person.01101754741.17
164 rdf:rest rdf:nil
165 N655cf8f6d5824d30b6caec7677dfe933 schema:issueNumber 2
166 rdf:type schema:PublicationIssue
167 N665fb4cf78124c1c8d4a9401ce00d949 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Paris
169 rdf:type schema:DefinedTerm
170 N6b5c9d6ba48d4ba0ad301bfdd02690cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Antibodies, Monoclonal, Humanized
172 rdf:type schema:DefinedTerm
173 N6c2564e4232e4dbeae31e056fc9fac42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Treatment Outcome
175 rdf:type schema:DefinedTerm
176 N6d90f561dc9241c28aef48e3849189d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name ROC Curve
178 rdf:type schema:DefinedTerm
179 N6dc202fe1480428092bb32ff499146f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Aged, 80 and over
181 rdf:type schema:DefinedTerm
182 N701e0ceaadf5462ab496d0d55fd1ebef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Female
184 rdf:type schema:DefinedTerm
185 N7510194c74d041c3bd58266e560f17e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Neoadjuvant Therapy
187 rdf:type schema:DefinedTerm
188 N7b2a887356de488f84dcd3fdb571ec9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Breast Neoplasms
190 rdf:type schema:DefinedTerm
191 N8512af7a72964c5387a24183341ce9d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Chi-Square Distribution
193 rdf:type schema:DefinedTerm
194 N953ad112894c496faf655b0a45a755f9 rdf:first sg:person.01304024657.30
195 rdf:rest N5b0311f693f24278b6ef153a7cca60c5
196 N9a09d862b9c646f2801f480d079d7be6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Logistic Models
198 rdf:type schema:DefinedTerm
199 N9a8e745acf494e768791d0578936415a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Humans
201 rdf:type schema:DefinedTerm
202 Nb1e89d5d11a942d787ac581ced7e0a09 schema:name pubmed_id
203 schema:value 22160638
204 rdf:type schema:PropertyValue
205 Nb8a83a7e722d49cc9b1c91333d3858ad rdf:first sg:person.0755060031.11
206 rdf:rest Ne5f8dd67bc7441818548f31ff74c557c
207 Nc89c5ee179674de3932da31184a10059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Receptor, ErbB-2
209 rdf:type schema:DefinedTerm
210 Nc9811c569a524cfeb56913dfaec6f209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Chemotherapy, Adjuvant
212 rdf:type schema:DefinedTerm
213 Nd01a98c8771349499692fbd067e1c2b8 rdf:first sg:person.0763265400.45
214 rdf:rest N953ad112894c496faf655b0a45a755f9
215 Ne5f8dd67bc7441818548f31ff74c557c rdf:first sg:person.01325213233.35
216 rdf:rest N317d7f08a35f494cb8001f6d7733c1b5
217 Ne65dd57b53374edc8d539c76590d3fb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Taxoids
219 rdf:type schema:DefinedTerm
220 Nfc5094d78a76484f8be1c3fa4af11208 schema:name dimensions_id
221 schema:value pub.1020753637
222 rdf:type schema:PropertyValue
223 Nfdf34fd00e5441d1a72f4e6c6d939b8e schema:name doi
224 schema:value 10.1007/s10549-011-1897-0
225 rdf:type schema:PropertyValue
226 Nff716fe4ffe0484e8292c7634c13db79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Discriminant Analysis
228 rdf:type schema:DefinedTerm
229 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
230 schema:name Medical and Health Sciences
231 rdf:type schema:DefinedTerm
232 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
233 schema:name Oncology and Carcinogenesis
234 rdf:type schema:DefinedTerm
235 sg:journal.1092777 schema:issn 0167-6806
236 1573-7217
237 schema:name Breast Cancer Research and Treatment
238 schema:publisher Springer Nature
239 rdf:type schema:Periodical
240 sg:person.01037345350.48 schema:affiliation grid-institutes:None
241 schema:familyName Chopier
242 schema:givenName Jocelyne
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037345350.48
244 rdf:type schema:Person
245 sg:person.01101754741.17 schema:affiliation grid-institutes:grid.7429.8
246 schema:familyName Rouzier
247 schema:givenName Roman
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17
249 rdf:type schema:Person
250 sg:person.01152433143.34 schema:affiliation grid-institutes:grid.7429.8
251 schema:familyName Frati
252 schema:givenName Albane
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152433143.34
254 rdf:type schema:Person
255 sg:person.01166567564.74 schema:affiliation grid-institutes:grid.7429.8
256 schema:familyName Daraï
257 schema:givenName Emile
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74
259 rdf:type schema:Person
260 sg:person.01304024657.30 schema:affiliation grid-institutes:None
261 schema:familyName Gligorov
262 schema:givenName Joseph
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304024657.30
264 rdf:type schema:Person
265 sg:person.01325213233.35 schema:affiliation grid-institutes:grid.7429.8
266 schema:familyName Coutant
267 schema:givenName Charles
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325213233.35
269 rdf:type schema:Person
270 sg:person.01351724057.36 schema:affiliation grid-institutes:None
271 schema:familyName Antoine
272 schema:givenName Martine
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724057.36
274 rdf:type schema:Person
275 sg:person.0601607133.26 schema:affiliation grid-institutes:None
276 schema:familyName Bezu
277 schema:givenName Corinne
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601607133.26
279 rdf:type schema:Person
280 sg:person.0755060031.11 schema:affiliation grid-institutes:grid.7429.8
281 schema:familyName Chereau
282 schema:givenName Elisabeth
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060031.11
284 rdf:type schema:Person
285 sg:person.0763265400.45 schema:affiliation grid-institutes:grid.7429.8
286 schema:familyName Uzan
287 schema:givenName Serge
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763265400.45
289 rdf:type schema:Person
290 sg:pub.10.1007/978-2-8178-0249-7_107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089822796
291 https://doi.org/10.1007/978-2-8178-0249-7_107
292 rdf:type schema:CreativeWork
293 sg:pub.10.1038/sj.bjc.6602235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789608
294 https://doi.org/10.1038/sj.bjc.6602235
295 rdf:type schema:CreativeWork
296 grid-institutes:None schema:alternateName Department of Anatomo-Pathology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
297 Department of Medical Oncology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
298 Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
299 Department of Radiology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
300 schema:name Department of Anatomo-Pathology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
301 Department of Medical Oncology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
302 Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
303 Department of Radiology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
304 rdf:type schema:Organization
305 grid-institutes:grid.7429.8 schema:alternateName Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
306 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
307 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...