Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Albane Frati, Elisabeth Chereau, Charles Coutant, Corinne Bezu, Martine Antoine, Jocelyne Chopier, Emile Daraï, Serge Uzan, Joseph Gligorov, Roman Rouzier

ABSTRACT

The aim of this study is to compare two published nomograms, the "Institut Gustave Roussy/M.D. Anderson Cancer Center" (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed. More... »

PAGES

601-607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0

DOI

http://dx.doi.org/10.1007/s10549-011-1897-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020753637

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22160638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal, Humanized", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Combined Chemotherapy Protocols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotherapy, Adjuvant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Support Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Discriminant Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mastectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nomograms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Paris", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taxoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trastuzumab", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frati", 
        "givenName": "Albane", 
        "id": "sg:person.01152433143.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152433143.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chereau", 
        "givenName": "Elisabeth", 
        "id": "sg:person.0755060031.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060031.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coutant", 
        "givenName": "Charles", 
        "id": "sg:person.01325213233.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325213233.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bezu", 
        "givenName": "Corinne", 
        "id": "sg:person.0601607133.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601607133.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Anatomo-Pathology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antoine", 
        "givenName": "Martine", 
        "id": "sg:person.01351724057.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724057.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chopier", 
        "givenName": "Jocelyne", 
        "id": "sg:person.01037345350.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037345350.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dara\u00ef", 
        "givenName": "Emile", 
        "id": "sg:person.01166567564.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uzan", 
        "givenName": "Serge", 
        "id": "sg:person.0763265400.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763265400.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medical Oncology, H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gligorov", 
        "givenName": "Joseph", 
        "id": "sg:person.01304024657.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304024657.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Obstetrics and Gynecology (P\u00f4le GYNORESP), H\u00f4pital Tenon, Assistance Publique H\u00f4pitaux de Paris, 4 rue de la Chine, 75020, Paris, France", 
            "Institut Universitaire du Cancer de l\u2019universit\u00e9 Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzier", 
        "givenName": "Roman", 
        "id": "sg:person.01101754741.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejca.2010.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.02.5023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009293740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015144184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789608", 
          "https://doi.org/10.1038/sj.bjc.6602235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.bjc.6602235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789608", 
          "https://doi.org/10.1038/sj.bjc.6602235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.20298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030681220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037463076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/dji021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042544349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.10458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044689120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.02.6914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045440787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.0235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050681304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/45.3-4.562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.20.5.1304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064202853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1999.17.2.460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074265640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2001.19.22.4224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074954337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-2-8178-0249-7_107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089822796", 
          "https://doi.org/10.1007/978-2-8178-0249-7_107"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "The aim of this study is to compare two published nomograms, the \"Institut Gustave Roussy/M.D. Anderson Cancer Center\" (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-011-1897-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "name": "Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors", 
    "pagination": "601-607", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "62e2e721881b86b833ae69f5aca3a8961963aff606b41acde5ac500f805882e8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22160638"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-011-1897-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020753637"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-011-1897-0", 
      "https://app.dimensions.ai/details/publication/pub.1020753637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10549-011-1897-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-011-1897-0'


 

This table displays all metadata directly associated to this object as RDF triples.

302 TRIPLES      21 PREDICATES      69 URIs      46 LITERALS      34 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-011-1897-0 schema:about N0169f3100922421e937367b6feb3e293
2 N0385fb7349e440328a54b0257b31583f
3 N0c9100831e2245d38a832cd0eeb3ed6c
4 N1478ccf229aa46928b0ea413f2856353
5 N17b98380775d4c51bf24fad10e3e86cf
6 N38148b7046814f658838cbd4a0949221
7 N3a95b92729ac46fd9c40beeb5d45a9af
8 N4015649a136141f6a97c9575646cde4c
9 N415e9c263f364d4d89b389f30cf33f2d
10 N60b61d6601254afa9cb50027c8a6b7f2
11 N64e3177033494a6d92858162870271e8
12 N73b593e66bd347a7bc005e64556e455e
13 N775f7905eb0442d19b11bbf83dba5639
14 N7e96c4677a7447e5b2bc25002db2609d
15 N83b0ee68d8e8489f8f73d78e4d0102cb
16 N85968f1e6feb4b8a8a45a0ae3b9b1d87
17 N87aca2866b8d42a5baa89bf735dfd915
18 Na071dd9d1b6346ea8b83abea274c0ae5
19 Na354771bf2d24cfaaebf053ffb45daff
20 Nbd8ad06703a5474e92fc681e962386ed
21 Ncec331bf44824d9095ac8b90bf2826da
22 Nd7a5accfe1c6478cb7b860c1afa90c1c
23 Ndc193d39b29a4234aa8d4abbabe7874d
24 Neaaee348f61944608c34f7d1eb004ebb
25 Neca037caff1b45fba4b113d47676880e
26 anzsrc-for:11
27 anzsrc-for:1112
28 schema:author Ncd03a57362304f4d92f3aab6c6a6ecef
29 schema:citation sg:pub.10.1007/978-2-8178-0249-7_107
30 sg:pub.10.1038/sj.bjc.6602235
31 https://doi.org/10.1002/cncr.10458
32 https://doi.org/10.1002/cncr.20298
33 https://doi.org/10.1002/cncr.20491
34 https://doi.org/10.1016/j.ejca.2010.04.008
35 https://doi.org/10.1093/biomet/45.3-4.562
36 https://doi.org/10.1093/jnci/dji021
37 https://doi.org/10.1200/jco.1999.17.2.460
38 https://doi.org/10.1200/jco.20.5.1304
39 https://doi.org/10.1200/jco.2001.19.22.4224
40 https://doi.org/10.1200/jco.2005.01.2898
41 https://doi.org/10.1200/jco.2005.02.5023
42 https://doi.org/10.1200/jco.2005.02.6914
43 https://doi.org/10.1200/jco.2007.15.0235
44 schema:datePublished 2012-04
45 schema:datePublishedReg 2012-04-01
46 schema:description The aim of this study is to compare two published nomograms, the "Institut Gustave Roussy/M.D. Anderson Cancer Center" (IGR/MDACC) and the Colleoni nomograms, in predicting pathologic complete responses (pCR) to preoperative chemotherapy in an independent cohort and to assess the impact of HER2 status. Data from 200 patients with breast carcinoma treated with preoperative chemotherapy were collected. We calculated pCR rate predictions with the two nomograms and compared the predictions with the outcomes. Sixty percent of the patients with HER2-positive tumors received trastuzumab concomitantly with taxanes. Model performances were quantified with respect to discrimination and calibration. In the whole population, the area under the ROC curve (AUC) for the IGR/MDACC nomogram and the Colleoni nomogram were 0.74 and 0.75, respectively. Both of them underestimated the pCR rate (P = 0.026 and 0.0005). When patients treated with trastuzumab were excluded, the AUC were excellent: 0.78 for both nomograms with no significant difference between the predicted and the observed pCR (P = 0.14 and 0.15). When the specific population treated with trastuzumab preoperatively was analyzed, the AUC for the IGR/MDACC nomogram and the Colleoni nomogram were poor, 0.52 and 0.53, respectively. The IGR/MDACC and the Colleoni nomograms were accurate in predicting the probability of pCR after preoperative chemotherapy in the HER2-negative population but did not correctly predict pCR in the HER2-positive patients who received trastuzumab. This suggests that responses to preoperative chemotherapy, including trastuzumab, are biologically driven and that a specific nomogram or predictor for HER2-positive patients has to be developed.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N2b0d7792634441c2a9d05268046de715
51 N33080fe0581244ad9fdbaf8b5ab6c828
52 sg:journal.1092777
53 schema:name Comparison of two nomograms to predict pathologic complete responses to neoadjuvant chemotherapy for breast cancer: evidence that HER2-positive tumors need specific predictors
54 schema:pagination 601-607
55 schema:productId N2e678c4a2bc743c9af02045f124f103c
56 N30d21c9fdd664c7884308216110243ac
57 N655f5e55a4c44842bf1aff60e56f4d9c
58 N9f59db5f171244559c639fcb452f66ff
59 Nb4468505e9f0473480d226c4e777c9ff
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020753637
61 https://doi.org/10.1007/s10549-011-1897-0
62 schema:sdDatePublished 2019-04-10T17:31
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N61510794136a427b8b17e104490bd73f
65 schema:url http://link.springer.com/10.1007%2Fs10549-011-1897-0
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0169f3100922421e937367b6feb3e293 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Adult
71 rdf:type schema:DefinedTerm
72 N0385fb7349e440328a54b0257b31583f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Trastuzumab
74 rdf:type schema:DefinedTerm
75 N0c082e19ee7841ab81893b901cc58f0d schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
76 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
77 rdf:type schema:Organization
78 N0c9100831e2245d38a832cd0eeb3ed6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Paris
80 rdf:type schema:DefinedTerm
81 N1478ccf229aa46928b0ea413f2856353 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Breast Neoplasms
83 rdf:type schema:DefinedTerm
84 N17b98380775d4c51bf24fad10e3e86cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Antineoplastic Combined Chemotherapy Protocols
86 rdf:type schema:DefinedTerm
87 N1c79256b8c6743faa4a74717c3fafebf schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
88 rdf:type schema:Organization
89 N250cfeef9d6f4220bf5772117630ac06 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
90 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
91 rdf:type schema:Organization
92 N2b0d7792634441c2a9d05268046de715 schema:volumeNumber 132
93 rdf:type schema:PublicationVolume
94 N2e678c4a2bc743c9af02045f124f103c schema:name pubmed_id
95 schema:value 22160638
96 rdf:type schema:PropertyValue
97 N30d21c9fdd664c7884308216110243ac schema:name dimensions_id
98 schema:value pub.1020753637
99 rdf:type schema:PropertyValue
100 N33080fe0581244ad9fdbaf8b5ab6c828 schema:issueNumber 2
101 rdf:type schema:PublicationIssue
102 N38148b7046814f658838cbd4a0949221 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N3a95b92729ac46fd9c40beeb5d45a9af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Chi-Square Distribution
107 rdf:type schema:DefinedTerm
108 N3aa7723bd9ad4b7e979fc19be62a12e0 rdf:first sg:person.01351724057.36
109 rdf:rest Nf9ddeaf05b32411594906c8c29c77f8c
110 N4015649a136141f6a97c9575646cde4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Aged
112 rdf:type schema:DefinedTerm
113 N415e9c263f364d4d89b389f30cf33f2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name ROC Curve
115 rdf:type schema:DefinedTerm
116 N44e6f47a594f4a46abe56356b6d61007 schema:name Department of Anatomo-Pathology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
117 rdf:type schema:Organization
118 N49884d5a93b6485abd96262678e67d26 rdf:first sg:person.0763265400.45
119 rdf:rest Nf582bb5e3baa4bd2b37d470b2a6d847e
120 N4c2c7a1846374256a91fedcf6d1997d8 rdf:first sg:person.01166567564.74
121 rdf:rest N49884d5a93b6485abd96262678e67d26
122 N5d65249ba35f4f928acd375ecba12168 schema:name Department of Medical Oncology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
123 rdf:type schema:Organization
124 N60b61d6601254afa9cb50027c8a6b7f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Middle Aged
126 rdf:type schema:DefinedTerm
127 N61510794136a427b8b17e104490bd73f schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N64e3177033494a6d92858162870271e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Decision Support Techniques
131 rdf:type schema:DefinedTerm
132 N655f5e55a4c44842bf1aff60e56f4d9c schema:name doi
133 schema:value 10.1007/s10549-011-1897-0
134 rdf:type schema:PropertyValue
135 N73b593e66bd347a7bc005e64556e455e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Taxoids
137 rdf:type schema:DefinedTerm
138 N775f7905eb0442d19b11bbf83dba5639 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Chemotherapy, Adjuvant
140 rdf:type schema:DefinedTerm
141 N7e96c4677a7447e5b2bc25002db2609d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Antibodies, Monoclonal, Humanized
143 rdf:type schema:DefinedTerm
144 N83b0ee68d8e8489f8f73d78e4d0102cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Discriminant Analysis
146 rdf:type schema:DefinedTerm
147 N85968f1e6feb4b8a8a45a0ae3b9b1d87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Logistic Models
149 rdf:type schema:DefinedTerm
150 N87aca2866b8d42a5baa89bf735dfd915 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Mastectomy
152 rdf:type schema:DefinedTerm
153 N9533c21e4051497094d3521cfa7ab81b rdf:first sg:person.0755060031.11
154 rdf:rest Nd0b7967a324745caa3f2f85e90700cbb
155 N9f59db5f171244559c639fcb452f66ff schema:name readcube_id
156 schema:value 62e2e721881b86b833ae69f5aca3a8961963aff606b41acde5ac500f805882e8
157 rdf:type schema:PropertyValue
158 Na071dd9d1b6346ea8b83abea274c0ae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Female
160 rdf:type schema:DefinedTerm
161 Na354771bf2d24cfaaebf053ffb45daff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Nomograms
163 rdf:type schema:DefinedTerm
164 Nb4304b48482b489fa9ba5594aff77f6c schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
165 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
166 rdf:type schema:Organization
167 Nb4468505e9f0473480d226c4e777c9ff schema:name nlm_unique_id
168 schema:value 8111104
169 rdf:type schema:PropertyValue
170 Nb8f6c683b2384ec8a965aed67f89c035 rdf:first sg:person.01101754741.17
171 rdf:rest rdf:nil
172 Nbd8ad06703a5474e92fc681e962386ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Neoadjuvant Therapy
174 rdf:type schema:DefinedTerm
175 Nc002ddf594a64a3eae61d8484a7d34d2 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
176 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
177 rdf:type schema:Organization
178 Ncca436dc6bfd479d8ac011e4c63e75f9 schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
179 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
180 rdf:type schema:Organization
181 Ncd03a57362304f4d92f3aab6c6a6ecef rdf:first sg:person.01152433143.34
182 rdf:rest N9533c21e4051497094d3521cfa7ab81b
183 Ncec331bf44824d9095ac8b90bf2826da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Treatment Outcome
185 rdf:type schema:DefinedTerm
186 Nd0b7967a324745caa3f2f85e90700cbb rdf:first sg:person.01325213233.35
187 rdf:rest Ne0651ffee0084823a42b148f9c653bbf
188 Nd7a5accfe1c6478cb7b860c1afa90c1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Aged, 80 and over
190 rdf:type schema:DefinedTerm
191 Ndc193d39b29a4234aa8d4abbabe7874d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Biomarkers, Tumor
193 rdf:type schema:DefinedTerm
194 Ne0651ffee0084823a42b148f9c653bbf rdf:first sg:person.0601607133.26
195 rdf:rest N3aa7723bd9ad4b7e979fc19be62a12e0
196 Neaaee348f61944608c34f7d1eb004ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Receptor, ErbB-2
198 rdf:type schema:DefinedTerm
199 Neca037caff1b45fba4b113d47676880e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Probability
201 rdf:type schema:DefinedTerm
202 Nf21187adb92841189283e9d290d1470a schema:name Department of Radiology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
203 rdf:type schema:Organization
204 Nf430adf6d18e4b0686ee3ef8f5c64b9f schema:name Department of Obstetrics and Gynecology (Pôle GYNORESP), Hôpital Tenon, Assistance Publique Hôpitaux de Paris, 4 rue de la Chine, 75020, Paris, France
205 Institut Universitaire du Cancer de l’université Pierre et Marie Curie, Paris 6, INSERM-UMR S 938, ER2-Prediction Unit, Paris, France
206 rdf:type schema:Organization
207 Nf582bb5e3baa4bd2b37d470b2a6d847e rdf:first sg:person.01304024657.30
208 rdf:rest Nb8f6c683b2384ec8a965aed67f89c035
209 Nf9ddeaf05b32411594906c8c29c77f8c rdf:first sg:person.01037345350.48
210 rdf:rest N4c2c7a1846374256a91fedcf6d1997d8
211 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
212 schema:name Medical and Health Sciences
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
215 schema:name Oncology and Carcinogenesis
216 rdf:type schema:DefinedTerm
217 sg:journal.1092777 schema:issn 0167-6806
218 1573-7217
219 schema:name Breast Cancer Research and Treatment
220 rdf:type schema:Periodical
221 sg:person.01037345350.48 schema:affiliation Nf21187adb92841189283e9d290d1470a
222 schema:familyName Chopier
223 schema:givenName Jocelyne
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037345350.48
225 rdf:type schema:Person
226 sg:person.01101754741.17 schema:affiliation Ncca436dc6bfd479d8ac011e4c63e75f9
227 schema:familyName Rouzier
228 schema:givenName Roman
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101754741.17
230 rdf:type schema:Person
231 sg:person.01152433143.34 schema:affiliation Nc002ddf594a64a3eae61d8484a7d34d2
232 schema:familyName Frati
233 schema:givenName Albane
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152433143.34
235 rdf:type schema:Person
236 sg:person.01166567564.74 schema:affiliation Nf430adf6d18e4b0686ee3ef8f5c64b9f
237 schema:familyName Daraï
238 schema:givenName Emile
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166567564.74
240 rdf:type schema:Person
241 sg:person.01304024657.30 schema:affiliation N5d65249ba35f4f928acd375ecba12168
242 schema:familyName Gligorov
243 schema:givenName Joseph
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304024657.30
245 rdf:type schema:Person
246 sg:person.01325213233.35 schema:affiliation Nb4304b48482b489fa9ba5594aff77f6c
247 schema:familyName Coutant
248 schema:givenName Charles
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325213233.35
250 rdf:type schema:Person
251 sg:person.01351724057.36 schema:affiliation N44e6f47a594f4a46abe56356b6d61007
252 schema:familyName Antoine
253 schema:givenName Martine
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351724057.36
255 rdf:type schema:Person
256 sg:person.0601607133.26 schema:affiliation N1c79256b8c6743faa4a74717c3fafebf
257 schema:familyName Bezu
258 schema:givenName Corinne
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601607133.26
260 rdf:type schema:Person
261 sg:person.0755060031.11 schema:affiliation N0c082e19ee7841ab81893b901cc58f0d
262 schema:familyName Chereau
263 schema:givenName Elisabeth
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755060031.11
265 rdf:type schema:Person
266 sg:person.0763265400.45 schema:affiliation N250cfeef9d6f4220bf5772117630ac06
267 schema:familyName Uzan
268 schema:givenName Serge
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763265400.45
270 rdf:type schema:Person
271 sg:pub.10.1007/978-2-8178-0249-7_107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089822796
272 https://doi.org/10.1007/978-2-8178-0249-7_107
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/sj.bjc.6602235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789608
275 https://doi.org/10.1038/sj.bjc.6602235
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1002/cncr.10458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044689120
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1002/cncr.20298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030681220
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1002/cncr.20491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015144184
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1016/j.ejca.2010.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176410
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/biomet/45.3-4.562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416773
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1093/jnci/dji021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544349
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1200/jco.1999.17.2.460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074265640
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1200/jco.20.5.1304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064202853
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1200/jco.2001.19.22.4224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074954337
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1200/jco.2005.01.2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037463076
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1200/jco.2005.02.5023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009293740
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1200/jco.2005.02.6914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045440787
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1200/jco.2007.15.0235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050681304
302 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...