A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

L. J. Lancashire, D. G. Powe, J. S. Reis-Filho, E. Rakha, C. Lemetre, B. Weigelt, T. M. Abdel-Fatah, A. R. Green, R. Mukta, R. Blamey, E. C. Paish, R. C. Rees, I. O. Ellis, G. R. Ball

ABSTRACT

Gene expression microarrays allow for the high throughput analysis of huge numbers of gene transcripts and this technology has been widely applied to the molecular and biological classification of cancer patients and in predicting clinical outcome. A potential handicap of such data intensive molecular technologies is the translation to clinical application in routine practice. In using an artificial neural network bioinformatic approach, we have reduced a 70 gene signature to just 9 genes capable of accurately predicting distant metastases in the original dataset. Upon validation in a follow-up cohort, this signature was an independent predictor of metastases free and overall survival in the presence of the 70 gene signature and other factors. Interestingly, the ANN signature and CA9 expression also split the groups defined by the 70 gene signature into prognostically distinct groups. Subsequently, the presence of protein for the principal prognosticator gene was categorically assessed in breast cancer tissue of an experimental and independent validation patient cohort, using immunohistochemistry. Importantly our principal prognosticator, CA9, showed that it is capable of selecting an aggressive subgroup of patients who are known to have poor prognosis. More... »

PAGES

83-93

References to SciGraph publications

  • 2001-06. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks in NATURE MEDICINE
  • 2003-09. The Presence of a Fibrotic Focus in Invasive Breast Carcinoma Correlates with the Expression of Carbonic Anhydrase IX and is a Marker of Hypoxia and Poor Prognosis in BREAST CANCER RESEARCH AND TREATMENT
  • 2000-04. How diagnosis with microarrays can help cancer patients in NATURE
  • 1957-09. Histological Grading and Prognosis in Breast Cancer in BRITISH JOURNAL OF CANCER
  • 1999-01. Exploring the new world of the genome with DNA microarrays in NATURE GENETICS
  • 2002-01. Gene expression profiling predicts clinical outcome of breast cancer in NATURE
  • 2008-08. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures in BREAST CANCER RESEARCH
  • 2000-08. Molecular portraits of human breast tumours in NATURE
  • 2006-01. RNA interference against Hec1 inhibits tumor growth in vivo in GENE THERAPY
  • 2007-03. A gene-expression signature to predict survival in breast cancer across independent data sets in ONCOGENE
  • 2003-09. Necrosis and Hypoxia in Invasive Breast Carcinoma in BREAST CANCER RESEARCH AND TREATMENT
  • 2006-09. Basal-like breast cancer and the BRCA1 phenotype in ONCOGENE
  • 1999-06. Enhancement of chemotherapy by manipulation of tumour pH in BRITISH JOURNAL OF CANCER
  • 2002-07. TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells in ONCOGENE
  • 1986-10. Learning representations by back-propagating errors in NATURE
  • 2005-10. ERK1/2 inhibition increases antiestrogen treatment efficacy by interfering with hypoxia-induced downregulation of ERα: a combination therapy potentially targeting hypoxic and dormant tumor cells in ONCOGENE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1

    DOI

    http://dx.doi.org/10.1007/s10549-009-0378-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029151382

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19347577


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Area Under Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbonic Anhydrase IX", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbonic Anhydrases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunohistochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Metastasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks (Computer)", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "ROC Curve", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tissue Array Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nottingham Trent University", 
              "id": "https://www.grid.ac/institutes/grid.12361.37", 
              "name": [
                "Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, University of Manchester, M20 4BX, Manchester, UK", 
                "John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lancashire", 
            "givenName": "L. J.", 
            "id": "sg:person.0577521317.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577521317.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Powe", 
            "givenName": "D. G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Cancer Research", 
              "id": "https://www.grid.ac/institutes/grid.18886.3f", 
              "name": [
                "The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reis-Filho", 
            "givenName": "J. S.", 
            "id": "sg:person.01045625165.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045625165.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rakha", 
            "givenName": "E.", 
            "id": "sg:person.0743637501.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743637501.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nottingham Trent University", 
              "id": "https://www.grid.ac/institutes/grid.12361.37", 
              "name": [
                "John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemetre", 
            "givenName": "C.", 
            "id": "sg:person.01163766455.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163766455.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Francis Crick Institute", 
              "id": "https://www.grid.ac/institutes/grid.451388.3", 
              "name": [
                "Signal Transduction Laboratory, London Research Institute, Lincoln\u2019s Inn Fields Laboratories, 44 Lincoln\u2019s Inn Fields, WC2A 3PX, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weigelt", 
            "givenName": "B.", 
            "id": "sg:person.01364124146.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364124146.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdel-Fatah", 
            "givenName": "T. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Green", 
            "givenName": "A. R.", 
            "id": "sg:person.016416665412.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukta", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nottingham City Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412920.c", 
              "name": [
                "Department of Surgery, Breast Institute, City Hospital Nottingham, NG5 1PB, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blamey", 
            "givenName": "R.", 
            "id": "sg:person.015650304144.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650304144.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paish", 
            "givenName": "E. C.", 
            "id": "sg:person.01255547221.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255547221.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nottingham Trent University", 
              "id": "https://www.grid.ac/institutes/grid.12361.37", 
              "name": [
                "John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rees", 
            "givenName": "R. C.", 
            "id": "sg:person.01013602144.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013602144.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nottingham", 
              "id": "https://www.grid.ac/institutes/grid.4563.4", 
              "name": [
                "Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ellis", 
            "givenName": "I. O.", 
            "id": "sg:person.01054612302.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nottingham Trent University", 
              "id": "https://www.grid.ac/institutes/grid.12361.37", 
              "name": [
                "John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ball", 
            "givenName": "G. R.", 
            "id": "sg:person.01315327454.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315327454.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/sj.onc.1208830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001668195", 
              "https://doi.org/10.1038/sj.onc.1208830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001668195", 
              "https://doi.org/10.1038/sj.onc.1208830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001668195", 
              "https://doi.org/10.1038/sj.onc.1208830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6690455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001747275", 
              "https://doi.org/10.1038/sj.bjc.6690455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6690455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001747275", 
              "https://doi.org/10.1038/sj.bjc.6690455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/89044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002292014", 
              "https://doi.org/10.1038/89044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/89044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002292014", 
              "https://doi.org/10.1038/89044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35010139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003267734", 
              "https://doi.org/10.1038/35010139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35010139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003267734", 
              "https://doi.org/10.1038/35010139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.3.395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003733509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/pap.0b013e31814b26fe", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004276838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/pap.0b013e31814b26fe", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004276838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artmed.2008.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005705165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009306785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-06-0480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012087916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.191502998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012580984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci23412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012598872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci23412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012598872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013818277", 
              "https://doi.org/10.1038/sj.onc.1209876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013818277", 
              "https://doi.org/10.1038/sj.onc.1209876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.201162998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014198831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017284394", 
              "https://doi.org/10.1038/4462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017284394", 
              "https://doi.org/10.1038/4462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(03)00404-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018058757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(03)00404-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018058757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/323533a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018367015", 
              "https://doi.org/10.1038/323533a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cem.858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020326751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa041588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022156409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa052933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024869935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024977029", 
              "https://doi.org/10.1038/sj.onc.1209920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024977029", 
              "https://doi.org/10.1038/sj.onc.1209920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.22436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027293725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025476722493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027784567", 
              "https://doi.org/10.1023/a:1025476722493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9440(10)65569-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030099054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-04-0220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031810883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032977958", 
              "https://doi.org/10.1038/sj.onc.1205142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1205142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032977958", 
              "https://doi.org/10.1038/sj.onc.1205142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/path.2254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033142224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1957.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033483945", 
              "https://doi.org/10.1038/bjc.1957.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1957.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033483945", 
              "https://doi.org/10.1038/bjc.1957.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35021093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033846543", 
              "https://doi.org/10.1038/35021093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.191367098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034333528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00019606-200303000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036797331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00019606-200303000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036797331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.vaccine.2007.06.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036845721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa021967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038600096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.21004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039744402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa012914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040112680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042187964", 
              "https://doi.org/10.1186/bcr2124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415530a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043001094", 
              "https://doi.org/10.1038/415530a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415530a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043001094", 
              "https://doi.org/10.1038/415530a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3302595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043504471", 
              "https://doi.org/10.1038/sj.gt.3302595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3302595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043504471", 
              "https://doi.org/10.1038/sj.gt.3302595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-07-1658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043938231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-06-2137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045821717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025702330207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046293250", 
              "https://doi.org/10.1023/a:1025702330207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-07-4397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047410688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jcp.2004.019885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051834736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1984.10478083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1986.10478291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1993.10476299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2001.19.16.3660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074864909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082642165", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082889926", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082962691", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-02", 
        "datePublishedReg": "2010-02-01", 
        "description": "Gene expression microarrays allow for the high throughput analysis of huge numbers of gene transcripts and this technology has been widely applied to the molecular and biological classification of cancer patients and in predicting clinical outcome. A potential handicap of such data intensive molecular technologies is the translation to clinical application in routine practice. In using an artificial neural network bioinformatic approach, we have reduced a 70 gene signature to just 9 genes capable of accurately predicting distant metastases in the original dataset. Upon validation in a follow-up cohort, this signature was an independent predictor of metastases free and overall survival in the presence of the 70 gene signature and other factors. Interestingly, the ANN signature and CA9 expression also split the groups defined by the 70 gene signature into prognostically distinct groups. Subsequently, the presence of protein for the principal prognosticator gene was categorically assessed in breast cancer tissue of an experimental and independent validation patient cohort, using immunohistochemistry. Importantly our principal prognosticator, CA9, showed that it is capable of selecting an aggressive subgroup of patients who are known to have poor prognosis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10549-009-0378-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1092777", 
            "issn": [
              "0167-6806", 
              "1573-7217"
            ], 
            "name": "Breast Cancer Research and Treatment", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "120"
          }
        ], 
        "name": "A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks", 
        "pagination": "83-93", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8adf6d09f3ff6486bb3b2e3ab5733a6f4c93981e14ec14ca2f939a674624a703"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19347577"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8111104"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10549-009-0378-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029151382"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10549-009-0378-1", 
          "https://app.dimensions.ai/details/publication/pub.1029151382"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13068_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10549-009-0378-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    410 TRIPLES      21 PREDICATES      98 URIs      41 LITERALS      29 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10549-009-0378-1 schema:about N03cdb6997ef44580afa953f2d19fcb5a
    2 N182f0bb78d0b46918c4d938b224420ad
    3 N1924d8c448af41ceb5925de083541529
    4 N3f0c457f374a448ca1cfcfe5a5e5f540
    5 N413182eb374f47709c311f07b9bbee1c
    6 N4c495819185f47aaaa55fa9b7bf2e34d
    7 N5facb8dc86c9429dae4827e313abddc5
    8 N7b992fbf117d4f4fb131fce0fe64394f
    9 N8203bdcbd523463da2062e24d8472197
    10 N9363e163f87b4e88b6471998ecce6651
    11 Nac53c2b0c2cd4c72b50cab0c0ed0efd7
    12 Nb1999711a7b7469e8562a56d5c1d2500
    13 Nb36c71e9ee6945dd9dd16e7488e41c95
    14 Nca108778c25c4bd2ad2053caa4c900be
    15 Ndef1c85bd82e47eeb18926ad2a4fdb48
    16 Ne483d357059f4037bd73b4ee7164f595
    17 Ne524130418b0404099c2fef0440592ed
    18 Ned1a00f3079c430e8d6283a50d2d1d28
    19 Nf26aa052fdd54556bbe72d2921c136e1
    20 Nfd957330670e4984ab7c162f5cc5c61b
    21 anzsrc-for:11
    22 anzsrc-for:1112
    23 schema:author Nad79ad63c34e46678f2a56459f589875
    24 schema:citation sg:pub.10.1023/a:1025476722493
    25 sg:pub.10.1023/a:1025702330207
    26 sg:pub.10.1038/323533a0
    27 sg:pub.10.1038/35010139
    28 sg:pub.10.1038/35021093
    29 sg:pub.10.1038/415530a
    30 sg:pub.10.1038/4462
    31 sg:pub.10.1038/89044
    32 sg:pub.10.1038/bjc.1957.43
    33 sg:pub.10.1038/sj.bjc.6690455
    34 sg:pub.10.1038/sj.gt.3302595
    35 sg:pub.10.1038/sj.onc.1205142
    36 sg:pub.10.1038/sj.onc.1208830
    37 sg:pub.10.1038/sj.onc.1209876
    38 sg:pub.10.1038/sj.onc.1209920
    39 sg:pub.10.1186/bcr2124
    40 https://app.dimensions.ai/details/publication/pub.1082642165
    41 https://app.dimensions.ai/details/publication/pub.1082889926
    42 https://app.dimensions.ai/details/publication/pub.1082962691
    43 https://doi.org/10.1002/cem.858
    44 https://doi.org/10.1002/ijc.21004
    45 https://doi.org/10.1002/ijc.22436
    46 https://doi.org/10.1002/path.2254
    47 https://doi.org/10.1016/j.artmed.2008.03.001
    48 https://doi.org/10.1016/j.vaccine.2007.06.040
    49 https://doi.org/10.1016/s0002-9440(10)65569-1
    50 https://doi.org/10.1016/s0022-2836(03)00404-2
    51 https://doi.org/10.1056/nejmoa012914
    52 https://doi.org/10.1056/nejmoa021967
    53 https://doi.org/10.1056/nejmoa041588
    54 https://doi.org/10.1056/nejmoa052933
    55 https://doi.org/10.1073/pnas.191367098
    56 https://doi.org/10.1073/pnas.191502998
    57 https://doi.org/10.1073/pnas.201162998
    58 https://doi.org/10.1080/01621459.1984.10478083
    59 https://doi.org/10.1080/01621459.1986.10478291
    60 https://doi.org/10.1080/01621459.1993.10476299
    61 https://doi.org/10.1093/bioinformatics/18.3.395
    62 https://doi.org/10.1093/bioinformatics/bti368
    63 https://doi.org/10.1097/00019606-200303000-00004
    64 https://doi.org/10.1097/pap.0b013e31814b26fe
    65 https://doi.org/10.1136/jcp.2004.019885
    66 https://doi.org/10.1158/0008-5472.can-06-2137
    67 https://doi.org/10.1158/1078-0432.ccr-04-0220
    68 https://doi.org/10.1158/1078-0432.ccr-06-0480
    69 https://doi.org/10.1158/1078-0432.ccr-07-1658
    70 https://doi.org/10.1158/1078-0432.ccr-07-4397
    71 https://doi.org/10.1172/jci23412
    72 https://doi.org/10.1200/jco.2001.19.16.3660
    73 schema:datePublished 2010-02
    74 schema:datePublishedReg 2010-02-01
    75 schema:description Gene expression microarrays allow for the high throughput analysis of huge numbers of gene transcripts and this technology has been widely applied to the molecular and biological classification of cancer patients and in predicting clinical outcome. A potential handicap of such data intensive molecular technologies is the translation to clinical application in routine practice. In using an artificial neural network bioinformatic approach, we have reduced a 70 gene signature to just 9 genes capable of accurately predicting distant metastases in the original dataset. Upon validation in a follow-up cohort, this signature was an independent predictor of metastases free and overall survival in the presence of the 70 gene signature and other factors. Interestingly, the ANN signature and CA9 expression also split the groups defined by the 70 gene signature into prognostically distinct groups. Subsequently, the presence of protein for the principal prognosticator gene was categorically assessed in breast cancer tissue of an experimental and independent validation patient cohort, using immunohistochemistry. Importantly our principal prognosticator, CA9, showed that it is capable of selecting an aggressive subgroup of patients who are known to have poor prognosis.
    76 schema:genre research_article
    77 schema:inLanguage en
    78 schema:isAccessibleForFree false
    79 schema:isPartOf Nb39f66e705a0410fad6ab2caddd0fef1
    80 Nf0bdc1b8f9f742a7a3bc6447b3ac51b8
    81 sg:journal.1092777
    82 schema:name A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks
    83 schema:pagination 83-93
    84 schema:productId N0c84ef961b94487b92bb79bfd773348d
    85 N2d359957b16e4c218016eb2e6b7b9e83
    86 N401fd7006b6d4772889e173865bd8f4e
    87 N696980a2438f4720ab982efdedc676e7
    88 Na982918ed35d4458b944aaab87518430
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029151382
    90 https://doi.org/10.1007/s10549-009-0378-1
    91 schema:sdDatePublished 2019-04-11T14:25
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N2749d67d041f4d69a26e0910dfbe01f5
    94 schema:url http://link.springer.com/10.1007%2Fs10549-009-0378-1
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N013eca653cac4c7487b92f5c1a58d3d2 rdf:first sg:person.01163766455.90
    99 rdf:rest N3af9d2f291ad4f528a257852b5b3fce3
    100 N03bcd2a232934509a3c4cdd06f35fbbe schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    101 schema:familyName Mukta
    102 schema:givenName R.
    103 rdf:type schema:Person
    104 N03cdb6997ef44580afa953f2d19fcb5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Carbonic Anhydrases
    106 rdf:type schema:DefinedTerm
    107 N05b55c4f95164d9383557e6abfb11d33 rdf:first sg:person.01013602144.34
    108 rdf:rest N5c77c70bd34f49a58724662303aab03a
    109 N0c84ef961b94487b92bb79bfd773348d schema:name pubmed_id
    110 schema:value 19347577
    111 rdf:type schema:PropertyValue
    112 N182f0bb78d0b46918c4d938b224420ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Immunohistochemistry
    114 rdf:type schema:DefinedTerm
    115 N1924d8c448af41ceb5925de083541529 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Computational Biology
    117 rdf:type schema:DefinedTerm
    118 N2749d67d041f4d69a26e0910dfbe01f5 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 N2d359957b16e4c218016eb2e6b7b9e83 schema:name nlm_unique_id
    121 schema:value 8111104
    122 rdf:type schema:PropertyValue
    123 N34e9d73bd03049ce815a57666d6a64f7 rdf:first sg:person.01255547221.22
    124 rdf:rest N05b55c4f95164d9383557e6abfb11d33
    125 N3af9d2f291ad4f528a257852b5b3fce3 rdf:first sg:person.01364124146.08
    126 rdf:rest N576bd4f4beb4491a875876f3a6bbcef9
    127 N3f0c457f374a448ca1cfcfe5a5e5f540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Carbonic Anhydrase IX
    129 rdf:type schema:DefinedTerm
    130 N401fd7006b6d4772889e173865bd8f4e schema:name readcube_id
    131 schema:value 8adf6d09f3ff6486bb3b2e3ab5733a6f4c93981e14ec14ca2f939a674624a703
    132 rdf:type schema:PropertyValue
    133 N413182eb374f47709c311f07b9bbee1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Neural Networks (Computer)
    135 rdf:type schema:DefinedTerm
    136 N4b674d26fd904f89a9deaa0ce87f5007 rdf:first Nc12b7352075b42dfb0457ff7b3bc6620
    137 rdf:rest Nf6ec19959e3049e6ae12b468bab1483d
    138 N4c495819185f47aaaa55fa9b7bf2e34d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name ROC Curve
    140 rdf:type schema:DefinedTerm
    141 N56116c17289942dfb19b388b447a3dc3 rdf:first sg:person.0743637501.84
    142 rdf:rest N013eca653cac4c7487b92f5c1a58d3d2
    143 N576bd4f4beb4491a875876f3a6bbcef9 rdf:first N8366ee7036574525b0ded9379280895e
    144 rdf:rest Nb1ab358ac40541fb96ef5c51993f52a9
    145 N5c77c70bd34f49a58724662303aab03a rdf:first sg:person.01054612302.65
    146 rdf:rest N5f5983b1c9eb4e75a9a7066392257a5c
    147 N5cd21527942f40218d11c1cf1ec0ad89 rdf:first N03bcd2a232934509a3c4cdd06f35fbbe
    148 rdf:rest Nd85532688b824a3da757601ed4b8d2cc
    149 N5f5983b1c9eb4e75a9a7066392257a5c rdf:first sg:person.01315327454.41
    150 rdf:rest rdf:nil
    151 N5facb8dc86c9429dae4827e313abddc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Female
    153 rdf:type schema:DefinedTerm
    154 N696980a2438f4720ab982efdedc676e7 schema:name dimensions_id
    155 schema:value pub.1029151382
    156 rdf:type schema:PropertyValue
    157 N7b992fbf117d4f4fb131fce0fe64394f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Tissue Array Analysis
    159 rdf:type schema:DefinedTerm
    160 N8203bdcbd523463da2062e24d8472197 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Aged
    162 rdf:type schema:DefinedTerm
    163 N8366ee7036574525b0ded9379280895e schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    164 schema:familyName Abdel-Fatah
    165 schema:givenName T. M.
    166 rdf:type schema:Person
    167 N9363e163f87b4e88b6471998ecce6651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Humans
    169 rdf:type schema:DefinedTerm
    170 Na982918ed35d4458b944aaab87518430 schema:name doi
    171 schema:value 10.1007/s10549-009-0378-1
    172 rdf:type schema:PropertyValue
    173 Nac53c2b0c2cd4c72b50cab0c0ed0efd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Prognosis
    175 rdf:type schema:DefinedTerm
    176 Nad79ad63c34e46678f2a56459f589875 rdf:first sg:person.0577521317.03
    177 rdf:rest N4b674d26fd904f89a9deaa0ce87f5007
    178 Nb1999711a7b7469e8562a56d5c1d2500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Neoplasm Metastasis
    180 rdf:type schema:DefinedTerm
    181 Nb1ab358ac40541fb96ef5c51993f52a9 rdf:first sg:person.016416665412.02
    182 rdf:rest N5cd21527942f40218d11c1cf1ec0ad89
    183 Nb36c71e9ee6945dd9dd16e7488e41c95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Antigens, Neoplasm
    185 rdf:type schema:DefinedTerm
    186 Nb39f66e705a0410fad6ab2caddd0fef1 schema:volumeNumber 120
    187 rdf:type schema:PublicationVolume
    188 Nc12b7352075b42dfb0457ff7b3bc6620 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    189 schema:familyName Powe
    190 schema:givenName D. G.
    191 rdf:type schema:Person
    192 Nca108778c25c4bd2ad2053caa4c900be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Adult
    194 rdf:type schema:DefinedTerm
    195 Nd85532688b824a3da757601ed4b8d2cc rdf:first sg:person.015650304144.58
    196 rdf:rest N34e9d73bd03049ce815a57666d6a64f7
    197 Ndef1c85bd82e47eeb18926ad2a4fdb48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Biomarkers, Tumor
    199 rdf:type schema:DefinedTerm
    200 Ne483d357059f4037bd73b4ee7164f595 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Middle Aged
    202 rdf:type schema:DefinedTerm
    203 Ne524130418b0404099c2fef0440592ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Sensitivity and Specificity
    205 rdf:type schema:DefinedTerm
    206 Ned1a00f3079c430e8d6283a50d2d1d28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name Breast Neoplasms
    208 rdf:type schema:DefinedTerm
    209 Nf0bdc1b8f9f742a7a3bc6447b3ac51b8 schema:issueNumber 1
    210 rdf:type schema:PublicationIssue
    211 Nf26aa052fdd54556bbe72d2921c136e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Area Under Curve
    213 rdf:type schema:DefinedTerm
    214 Nf6ec19959e3049e6ae12b468bab1483d rdf:first sg:person.01045625165.06
    215 rdf:rest N56116c17289942dfb19b388b447a3dc3
    216 Nfd957330670e4984ab7c162f5cc5c61b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Gene Expression Profiling
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Medical and Health Sciences
    221 rdf:type schema:DefinedTerm
    222 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Oncology and Carcinogenesis
    224 rdf:type schema:DefinedTerm
    225 sg:journal.1092777 schema:issn 0167-6806
    226 1573-7217
    227 schema:name Breast Cancer Research and Treatment
    228 rdf:type schema:Periodical
    229 sg:person.01013602144.34 schema:affiliation https://www.grid.ac/institutes/grid.12361.37
    230 schema:familyName Rees
    231 schema:givenName R. C.
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013602144.34
    233 rdf:type schema:Person
    234 sg:person.01045625165.06 schema:affiliation https://www.grid.ac/institutes/grid.18886.3f
    235 schema:familyName Reis-Filho
    236 schema:givenName J. S.
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045625165.06
    238 rdf:type schema:Person
    239 sg:person.01054612302.65 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    240 schema:familyName Ellis
    241 schema:givenName I. O.
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65
    243 rdf:type schema:Person
    244 sg:person.01163766455.90 schema:affiliation https://www.grid.ac/institutes/grid.12361.37
    245 schema:familyName Lemetre
    246 schema:givenName C.
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163766455.90
    248 rdf:type schema:Person
    249 sg:person.01255547221.22 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    250 schema:familyName Paish
    251 schema:givenName E. C.
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255547221.22
    253 rdf:type schema:Person
    254 sg:person.01315327454.41 schema:affiliation https://www.grid.ac/institutes/grid.12361.37
    255 schema:familyName Ball
    256 schema:givenName G. R.
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315327454.41
    258 rdf:type schema:Person
    259 sg:person.01364124146.08 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
    260 schema:familyName Weigelt
    261 schema:givenName B.
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364124146.08
    263 rdf:type schema:Person
    264 sg:person.015650304144.58 schema:affiliation https://www.grid.ac/institutes/grid.412920.c
    265 schema:familyName Blamey
    266 schema:givenName R.
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650304144.58
    268 rdf:type schema:Person
    269 sg:person.016416665412.02 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    270 schema:familyName Green
    271 schema:givenName A. R.
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02
    273 rdf:type schema:Person
    274 sg:person.0577521317.03 schema:affiliation https://www.grid.ac/institutes/grid.12361.37
    275 schema:familyName Lancashire
    276 schema:givenName L. J.
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577521317.03
    278 rdf:type schema:Person
    279 sg:person.0743637501.84 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
    280 schema:familyName Rakha
    281 schema:givenName E.
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743637501.84
    283 rdf:type schema:Person
    284 sg:pub.10.1023/a:1025476722493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027784567
    285 https://doi.org/10.1023/a:1025476722493
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1023/a:1025702330207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046293250
    288 https://doi.org/10.1023/a:1025702330207
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
    291 https://doi.org/10.1038/323533a0
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/35010139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267734
    294 https://doi.org/10.1038/35010139
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
    297 https://doi.org/10.1038/35021093
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
    300 https://doi.org/10.1038/415530a
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
    303 https://doi.org/10.1038/4462
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/89044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292014
    306 https://doi.org/10.1038/89044
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/bjc.1957.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033483945
    309 https://doi.org/10.1038/bjc.1957.43
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/sj.bjc.6690455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001747275
    312 https://doi.org/10.1038/sj.bjc.6690455
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/sj.gt.3302595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043504471
    315 https://doi.org/10.1038/sj.gt.3302595
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/sj.onc.1205142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032977958
    318 https://doi.org/10.1038/sj.onc.1205142
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/sj.onc.1208830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001668195
    321 https://doi.org/10.1038/sj.onc.1208830
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/sj.onc.1209876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013818277
    324 https://doi.org/10.1038/sj.onc.1209876
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/sj.onc.1209920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977029
    327 https://doi.org/10.1038/sj.onc.1209920
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1186/bcr2124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042187964
    330 https://doi.org/10.1186/bcr2124
    331 rdf:type schema:CreativeWork
    332 https://app.dimensions.ai/details/publication/pub.1082642165 schema:CreativeWork
    333 https://app.dimensions.ai/details/publication/pub.1082889926 schema:CreativeWork
    334 https://app.dimensions.ai/details/publication/pub.1082962691 schema:CreativeWork
    335 https://doi.org/10.1002/cem.858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020326751
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1002/ijc.21004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039744402
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1002/ijc.22436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027293725
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1002/path.2254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033142224
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1016/j.artmed.2008.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005705165
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1016/j.vaccine.2007.06.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036845721
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1016/s0002-9440(10)65569-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030099054
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1016/s0022-2836(03)00404-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018058757
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1056/nejmoa012914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040112680
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1056/nejmoa052933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024869935
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1073/pnas.191367098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034333528
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1073/pnas.191502998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012580984
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1073/pnas.201162998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014198831
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1080/01621459.1984.10478083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303009
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1080/01621459.1986.10478291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303268
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1080/01621459.1993.10476299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304383
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1093/bioinformatics/18.3.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003733509
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1093/bioinformatics/bti368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009306785
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.1097/00019606-200303000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036797331
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.1097/pap.0b013e31814b26fe schema:sameAs https://app.dimensions.ai/details/publication/pub.1004276838
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.1136/jcp.2004.019885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051834736
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.1158/0008-5472.can-06-2137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045821717
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.1158/1078-0432.ccr-04-0220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031810883
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.1158/1078-0432.ccr-06-0480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012087916
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.1158/1078-0432.ccr-07-1658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043938231
    388 rdf:type schema:CreativeWork
    389 https://doi.org/10.1158/1078-0432.ccr-07-4397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047410688
    390 rdf:type schema:CreativeWork
    391 https://doi.org/10.1172/jci23412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012598872
    392 rdf:type schema:CreativeWork
    393 https://doi.org/10.1200/jco.2001.19.16.3660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074864909
    394 rdf:type schema:CreativeWork
    395 https://www.grid.ac/institutes/grid.12361.37 schema:alternateName Nottingham Trent University
    396 schema:name Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, University of Manchester, M20 4BX, Manchester, UK
    397 John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK
    398 rdf:type schema:Organization
    399 https://www.grid.ac/institutes/grid.18886.3f schema:alternateName Institute of Cancer Research
    400 schema:name The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, London, UK
    401 rdf:type schema:Organization
    402 https://www.grid.ac/institutes/grid.412920.c schema:alternateName Nottingham City Hospital
    403 schema:name Department of Surgery, Breast Institute, City Hospital Nottingham, NG5 1PB, Nottingham, UK
    404 rdf:type schema:Organization
    405 https://www.grid.ac/institutes/grid.451388.3 schema:alternateName The Francis Crick Institute
    406 schema:name Signal Transduction Laboratory, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, WC2A 3PX, London, UK
    407 rdf:type schema:Organization
    408 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
    409 schema:name Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK
    410 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...