Ontology type: schema:ScholarlyArticle
2010-02
AUTHORSL. J. Lancashire, D. G. Powe, J. S. Reis-Filho, E. Rakha, C. Lemetre, B. Weigelt, T. M. Abdel-Fatah, A. R. Green, R. Mukta, R. Blamey, E. C. Paish, R. C. Rees, I. O. Ellis, G. R. Ball
ABSTRACTGene expression microarrays allow for the high throughput analysis of huge numbers of gene transcripts and this technology has been widely applied to the molecular and biological classification of cancer patients and in predicting clinical outcome. A potential handicap of such data intensive molecular technologies is the translation to clinical application in routine practice. In using an artificial neural network bioinformatic approach, we have reduced a 70 gene signature to just 9 genes capable of accurately predicting distant metastases in the original dataset. Upon validation in a follow-up cohort, this signature was an independent predictor of metastases free and overall survival in the presence of the 70 gene signature and other factors. Interestingly, the ANN signature and CA9 expression also split the groups defined by the 70 gene signature into prognostically distinct groups. Subsequently, the presence of protein for the principal prognosticator gene was categorically assessed in breast cancer tissue of an experimental and independent validation patient cohort, using immunohistochemistry. Importantly our principal prognosticator, CA9, showed that it is capable of selecting an aggressive subgroup of patients who are known to have poor prognosis. More... »
PAGES83-93
http://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1
DOIhttp://dx.doi.org/10.1007/s10549-009-0378-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029151382
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19347577
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oncology and Carcinogenesis",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adult",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Antigens, Neoplasm",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Area Under Curve",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biomarkers, Tumor",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Breast Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carbonic Anhydrase IX",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carbonic Anhydrases",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Expression Profiling",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Immunohistochemistry",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neoplasm Metastasis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neural Networks (Computer)",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Prognosis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "ROC Curve",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tissue Array Analysis",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Nottingham Trent University",
"id": "https://www.grid.ac/institutes/grid.12361.37",
"name": [
"Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, University of Manchester, M20 4BX, Manchester, UK",
"John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Lancashire",
"givenName": "L. J.",
"id": "sg:person.0577521317.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577521317.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Powe",
"givenName": "D. G.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Cancer Research",
"id": "https://www.grid.ac/institutes/grid.18886.3f",
"name": [
"The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, London, UK"
],
"type": "Organization"
},
"familyName": "Reis-Filho",
"givenName": "J. S.",
"id": "sg:person.01045625165.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045625165.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Rakha",
"givenName": "E.",
"id": "sg:person.0743637501.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743637501.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nottingham Trent University",
"id": "https://www.grid.ac/institutes/grid.12361.37",
"name": [
"John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Lemetre",
"givenName": "C.",
"id": "sg:person.01163766455.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163766455.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The Francis Crick Institute",
"id": "https://www.grid.ac/institutes/grid.451388.3",
"name": [
"Signal Transduction Laboratory, London Research Institute, Lincoln\u2019s Inn Fields Laboratories, 44 Lincoln\u2019s Inn Fields, WC2A 3PX, London, UK"
],
"type": "Organization"
},
"familyName": "Weigelt",
"givenName": "B.",
"id": "sg:person.01364124146.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364124146.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Abdel-Fatah",
"givenName": "T. M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Green",
"givenName": "A. R.",
"id": "sg:person.016416665412.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416665412.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Mukta",
"givenName": "R.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nottingham City Hospital",
"id": "https://www.grid.ac/institutes/grid.412920.c",
"name": [
"Department of Surgery, Breast Institute, City Hospital Nottingham, NG5 1PB, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Blamey",
"givenName": "R.",
"id": "sg:person.015650304144.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650304144.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Paish",
"givenName": "E. C.",
"id": "sg:person.01255547221.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255547221.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nottingham Trent University",
"id": "https://www.grid.ac/institutes/grid.12361.37",
"name": [
"John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Rees",
"givenName": "R. C.",
"id": "sg:person.01013602144.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013602144.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Nottingham",
"id": "https://www.grid.ac/institutes/grid.4563.4",
"name": [
"Department of Histopathology, Nottingham University Hospitals Trust and University of Nottingham, NG7 2UH, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Ellis",
"givenName": "I. O.",
"id": "sg:person.01054612302.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054612302.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nottingham Trent University",
"id": "https://www.grid.ac/institutes/grid.12361.37",
"name": [
"John Van Geest Cancer Research Centre, Nottingham Trent University, Clifton Campus, Clifton Lane, NG11 8NS, Nottingham, UK"
],
"type": "Organization"
},
"familyName": "Ball",
"givenName": "G. R.",
"id": "sg:person.01315327454.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315327454.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/sj.onc.1208830",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001668195",
"https://doi.org/10.1038/sj.onc.1208830"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1208830",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001668195",
"https://doi.org/10.1038/sj.onc.1208830"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1208830",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001668195",
"https://doi.org/10.1038/sj.onc.1208830"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.bjc.6690455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001747275",
"https://doi.org/10.1038/sj.bjc.6690455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.bjc.6690455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001747275",
"https://doi.org/10.1038/sj.bjc.6690455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/89044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002292014",
"https://doi.org/10.1038/89044"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/89044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002292014",
"https://doi.org/10.1038/89044"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35010139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003267734",
"https://doi.org/10.1038/35010139"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35010139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003267734",
"https://doi.org/10.1038/35010139"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/18.3.395",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003733509"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/pap.0b013e31814b26fe",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004276838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/pap.0b013e31814b26fe",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004276838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.artmed.2008.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005705165"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/bti368",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009306785"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-06-0480",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012087916"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.191502998",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012580984"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1172/jci23412",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012598872"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1172/jci23412",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012598872"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1209876",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013818277",
"https://doi.org/10.1038/sj.onc.1209876"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1209876",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013818277",
"https://doi.org/10.1038/sj.onc.1209876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.201162998",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014198831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/4462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017284394",
"https://doi.org/10.1038/4462"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/4462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017284394",
"https://doi.org/10.1038/4462"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-2836(03)00404-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018058757"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-2836(03)00404-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018058757"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/323533a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018367015",
"https://doi.org/10.1038/323533a0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cem.858",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020326751"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmoa041588",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022156409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmoa052933",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024869935"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1209920",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024977029",
"https://doi.org/10.1038/sj.onc.1209920"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1209920",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024977029",
"https://doi.org/10.1038/sj.onc.1209920"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ijc.22436",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027293725"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025476722493",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027784567",
"https://doi.org/10.1023/a:1025476722493"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0002-9440(10)65569-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030099054"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-04-0220",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031810883"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1205142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032977958",
"https://doi.org/10.1038/sj.onc.1205142"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.onc.1205142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032977958",
"https://doi.org/10.1038/sj.onc.1205142"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/path.2254",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033142224"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/bjc.1957.43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033483945",
"https://doi.org/10.1038/bjc.1957.43"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/bjc.1957.43",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033483945",
"https://doi.org/10.1038/bjc.1957.43"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35021093",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033846543",
"https://doi.org/10.1038/35021093"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.191367098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034333528"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/00019606-200303000-00004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036797331"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/00019606-200303000-00004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036797331"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.vaccine.2007.06.040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036845721"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmoa021967",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038600096"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/ijc.21004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039744402"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmoa012914",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040112680"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/bcr2124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042187964",
"https://doi.org/10.1186/bcr2124"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415530a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043001094",
"https://doi.org/10.1038/415530a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415530a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043001094",
"https://doi.org/10.1038/415530a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.gt.3302595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043504471",
"https://doi.org/10.1038/sj.gt.3302595"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/sj.gt.3302595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043504471",
"https://doi.org/10.1038/sj.gt.3302595"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-07-1658",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043938231"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/0008-5472.can-06-2137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045821717"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025702330207",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046293250",
"https://doi.org/10.1023/a:1025702330207"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-07-4397",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047410688"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/jcp.2004.019885",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051834736"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1984.10478083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058303009"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1986.10478291",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058303268"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1993.10476299",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058304383"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1200/jco.2001.19.16.3660",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074864909"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1082642165",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1082889926",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1082962691",
"type": "CreativeWork"
}
],
"datePublished": "2010-02",
"datePublishedReg": "2010-02-01",
"description": "Gene expression microarrays allow for the high throughput analysis of huge numbers of gene transcripts and this technology has been widely applied to the molecular and biological classification of cancer patients and in predicting clinical outcome. A potential handicap of such data intensive molecular technologies is the translation to clinical application in routine practice. In using an artificial neural network bioinformatic approach, we have reduced a 70 gene signature to just 9 genes capable of accurately predicting distant metastases in the original dataset. Upon validation in a follow-up cohort, this signature was an independent predictor of metastases free and overall survival in the presence of the 70 gene signature and other factors. Interestingly, the ANN signature and CA9 expression also split the groups defined by the 70 gene signature into prognostically distinct groups. Subsequently, the presence of protein for the principal prognosticator gene was categorically assessed in breast cancer tissue of an experimental and independent validation patient cohort, using immunohistochemistry. Importantly our principal prognosticator, CA9, showed that it is capable of selecting an aggressive subgroup of patients who are known to have poor prognosis.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10549-009-0378-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1092777",
"issn": [
"0167-6806",
"1573-7217"
],
"name": "Breast Cancer Research and Treatment",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "120"
}
],
"name": "A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks",
"pagination": "83-93",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"8adf6d09f3ff6486bb3b2e3ab5733a6f4c93981e14ec14ca2f939a674624a703"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19347577"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"8111104"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10549-009-0378-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029151382"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10549-009-0378-1",
"https://app.dimensions.ai/details/publication/pub.1029151382"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T14:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13068_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10549-009-0378-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-009-0378-1'
This table displays all metadata directly associated to this object as RDF triples.
410 TRIPLES
21 PREDICATES
98 URIs
41 LITERALS
29 BLANK NODES