Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

Malini Harigopal, Jonas Heymann, Sriparna Ghosh, Valsamo Anagnostou, Robert L. Camp, David L. Rimm

ABSTRACT

PURPOSE: Amplified in breast cancer (AIB1 or SRC-3) is an estrogen receptor coregulatory protein that together with other co-activators like transcription intermediary factor 2 (TIF2) and nuclear receptor co-repressor (NCoR), is implicated in estrogen signaling pathway and estrogen regulated tumor progression. We investigated the prognostic significance of AIB1, TIF2 & NCoR protein expression breast tissue microarray (TMA), and studied the relationship of coregulatory proteins to prognostic biomarkers like estrogen (ER), progesterone (PR) & HER2/neu and between coregulatory proteins. METHODS: AIBI, TIF2 & NCoR were studied by fluorescent immunohistochemical staining of a TMA with 670 breast cancer specimens, using AQUA software. RESULT: Using Cox univariate survival analyses, high AIB1 expression was associated with poor patient outcome (P = 0.002), while no association was noted for TIF2 (P = 0.376) & NCoR (P = 0.12). When subclassified by nodal or ER status, AIB1 was not prognostic in the node positive and ER positive subsets. However, in the ER negative and node negative subsets, high AIB1 expression was associated with poor patient outcome (P = 0.02 and P = 0.007 respectively). AIB1 retained its independent association with survival by multivariate analyses (P = 0.028). There was significant positive correlation between AIB1 and ER and PR status and with other cofators (TIF2 and NCoR) but not with HER2/neu status. CONCLUSION: High AIB1 expression was predictive of worse overall survival in our study, suggesting that AIB1 may be critical in breast carcinogenesis. More... »

PAGES

77-85

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-008-0063-9

DOI

http://dx.doi.org/10.1007/s10549-008-0063-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049759937

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18521745


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nuclear Receptor Coactivator 3", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Progesterone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harigopal", 
        "givenName": "Malini", 
        "id": "sg:person.01332175135.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332175135.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heymann", 
        "givenName": "Jonas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Sriparna", 
        "id": "sg:person.0730432025.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730432025.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anagnostou", 
        "givenName": "Valsamo", 
        "id": "sg:person.01336552123.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336552123.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camp", 
        "givenName": "Robert L.", 
        "id": "sg:person.012367147604.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L.", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/jnci/95.5.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004217721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9776(03)00137-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004330685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9776(03)00137-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004330685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.20.14.5041-5047.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006649837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009671240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009738931", 
          "https://doi.org/10.1007/bf00666157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00666157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009738931", 
          "https://doi.org/10.1007/bf00666157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-06-1933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010690117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m104744200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013229024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022930710850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015086740", 
          "https://doi.org/10.1023/a:1022930710850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2005.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017759986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-3-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020531789", 
          "https://doi.org/10.1186/1471-2407-3-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026772272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-0760(95)00269-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028987437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031102903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07853890310014579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034380291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024916126532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034849483", 
          "https://doi.org/10.1023/a:1024916126532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017910924390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035314438", 
          "https://doi.org/10.1023/a:1017910924390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.08.9938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036474381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012972808558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043763741", 
          "https://doi.org/10.1023/a:1012972808558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5328.965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-031212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063224761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/critrevoncog.v8.i1.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068132663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074595998", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074701732", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074735178", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074775095", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/172460080101600301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074896004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/172460080101600301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074896004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075262311", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075266189", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077267208", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082941410", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083366864", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "PURPOSE: Amplified in breast cancer (AIB1 or SRC-3) is an estrogen receptor coregulatory protein that together with other co-activators like transcription intermediary factor 2 (TIF2) and nuclear receptor co-repressor (NCoR), is implicated in estrogen signaling pathway and estrogen regulated tumor progression. We investigated the prognostic significance of AIB1, TIF2 & NCoR protein expression breast tissue microarray (TMA), and studied the relationship of coregulatory proteins to prognostic biomarkers like estrogen (ER), progesterone (PR) & HER2/neu and between coregulatory proteins.\nMETHODS: AIBI, TIF2 & NCoR were studied by fluorescent immunohistochemical staining of a TMA with 670 breast cancer specimens, using AQUA software.\nRESULT: Using Cox univariate survival analyses, high AIB1 expression was associated with poor patient outcome (P = 0.002), while no association was noted for TIF2 (P = 0.376) & NCoR (P = 0.12). When subclassified by nodal or ER status, AIB1 was not prognostic in the node positive and ER positive subsets. However, in the ER negative and node negative subsets, high AIB1 expression was associated with poor patient outcome (P = 0.02 and P = 0.007 respectively). AIB1 retained its independent association with survival by multivariate analyses (P = 0.028). There was significant positive correlation between AIB1 and ER and PR status and with other cofators (TIF2 and NCoR) but not with HER2/neu status.\nCONCLUSION: High AIB1 expression was predictive of worse overall survival in our study, suggesting that AIB1 may be critical in breast carcinogenesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-008-0063-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2631746", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2631768", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "115"
      }
    ], 
    "name": "Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with patient outcome", 
    "pagination": "77-85", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed0a73a54c96a7f305463684edda16aa5dd12b375d16e34f80106f5d4b488b2b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18521745"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-008-0063-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049759937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-008-0063-9", 
      "https://app.dimensions.ai/details/publication/pub.1049759937"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13096_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10549-008-0063-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-008-0063-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-008-0063-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-008-0063-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-008-0063-9'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      78 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-008-0063-9 schema:about N0a69ceae0086408380864448edc5438e
2 N1254629aa5394ca3a674bfb609fe07c9
3 N2b1d6c3d752e4e549f844edf3c85636c
4 N48f863ace82f4860973ac172557f306a
5 N5bb02c856a47400db259fb99b5b5aaae
6 N607aaa815034441cb3347cf7dd60390b
7 N68d17cf1872c47a6adaa2054b47aa946
8 N76ec802dd9ff4bd59836d8a04d22136f
9 N84ead07026db4242a9296f04820cd9a2
10 N9a618f4141f449afadaec8f3ba621c11
11 Naecb0d65d10a40e8abd8755d5b5ba9c7
12 Nba5823b95ed44e46b0365889d4a9bb81
13 Nc3336dc0c0344120aa0080c6657adbc4
14 Nc8cee904282649bfa93389c46787a702
15 Nd6e4ecea424c443c813c3a322a6211f4
16 Nde05965d02f94065a2e10f281c597a3d
17 Nf57819b7cfde41608a80509cda387913
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author Neba905939ccf426eaeac1688908523e2
21 schema:citation sg:pub.10.1007/bf00666157
22 sg:pub.10.1023/a:1012972808558
23 sg:pub.10.1023/a:1017910924390
24 sg:pub.10.1023/a:1022930710850
25 sg:pub.10.1023/a:1024916126532
26 sg:pub.10.1038/nm791
27 sg:pub.10.1186/1471-2407-3-22
28 https://app.dimensions.ai/details/publication/pub.1074595998
29 https://app.dimensions.ai/details/publication/pub.1074701732
30 https://app.dimensions.ai/details/publication/pub.1074735178
31 https://app.dimensions.ai/details/publication/pub.1074775095
32 https://app.dimensions.ai/details/publication/pub.1075262311
33 https://app.dimensions.ai/details/publication/pub.1075266189
34 https://app.dimensions.ai/details/publication/pub.1077267208
35 https://app.dimensions.ai/details/publication/pub.1082941410
36 https://app.dimensions.ai/details/publication/pub.1083366864
37 https://doi.org/10.1016/0960-0760(95)00269-3
38 https://doi.org/10.1016/j.humpath.2005.05.007
39 https://doi.org/10.1016/s0960-9776(03)00137-1
40 https://doi.org/10.1074/jbc.m104744200
41 https://doi.org/10.1080/07853890310014579
42 https://doi.org/10.1093/jnci/95.5.353
43 https://doi.org/10.1126/science.277.5328.965
44 https://doi.org/10.1128/mcb.20.14.5041-5047.2000
45 https://doi.org/10.1158/1078-0432.ccr-031212
46 https://doi.org/10.1158/1078-0432.ccr-04-0561
47 https://doi.org/10.1158/1078-0432.ccr-04-0713
48 https://doi.org/10.1158/1078-0432.ccr-06-1933
49 https://doi.org/10.1177/172460080101600301
50 https://doi.org/10.1200/jco.2005.10.036
51 https://doi.org/10.1200/jco.2006.08.9938
52 https://doi.org/10.1615/critrevoncog.v8.i1.20
53 schema:datePublished 2009-05
54 schema:datePublishedReg 2009-05-01
55 schema:description PURPOSE: Amplified in breast cancer (AIB1 or SRC-3) is an estrogen receptor coregulatory protein that together with other co-activators like transcription intermediary factor 2 (TIF2) and nuclear receptor co-repressor (NCoR), is implicated in estrogen signaling pathway and estrogen regulated tumor progression. We investigated the prognostic significance of AIB1, TIF2 & NCoR protein expression breast tissue microarray (TMA), and studied the relationship of coregulatory proteins to prognostic biomarkers like estrogen (ER), progesterone (PR) & HER2/neu and between coregulatory proteins. METHODS: AIBI, TIF2 & NCoR were studied by fluorescent immunohistochemical staining of a TMA with 670 breast cancer specimens, using AQUA software. RESULT: Using Cox univariate survival analyses, high AIB1 expression was associated with poor patient outcome (P = 0.002), while no association was noted for TIF2 (P = 0.376) & NCoR (P = 0.12). When subclassified by nodal or ER status, AIB1 was not prognostic in the node positive and ER positive subsets. However, in the ER negative and node negative subsets, high AIB1 expression was associated with poor patient outcome (P = 0.02 and P = 0.007 respectively). AIB1 retained its independent association with survival by multivariate analyses (P = 0.028). There was significant positive correlation between AIB1 and ER and PR status and with other cofators (TIF2 and NCoR) but not with HER2/neu status. CONCLUSION: High AIB1 expression was predictive of worse overall survival in our study, suggesting that AIB1 may be critical in breast carcinogenesis.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N533cf7c7869a4524810a92e7ada2e0b3
60 Nac603ffba9f643f1a100fc959e128dfe
61 sg:journal.1092777
62 schema:name Estrogen receptor co-activator (AIB1) protein expression by automated quantitative analysis (AQUA) in a breast cancer tissue microarray and association with patient outcome
63 schema:pagination 77-85
64 schema:productId N1d3b6685bdef4980b119d9472ca4bba6
65 N5d1682dc63cb4c1e989589e5bb17884a
66 N90fab67223b3403c9f04fc60a7a87d87
67 Na29aceaccb9444efbc3c68a1b96f88ee
68 Ncfabc2250df7403f8bbecdcaadc0823b
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049759937
70 https://doi.org/10.1007/s10549-008-0063-9
71 schema:sdDatePublished 2019-04-11T14:31
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N31b98c5fcfed483d9e1dceb0b45c6065
74 schema:url http://link.springer.com/10.1007/s10549-008-0063-9
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N00ca6cc5c9bb4b7bb25e703860acef0a rdf:first sg:person.0754207153.13
79 rdf:rest rdf:nil
80 N0a69ceae0086408380864448edc5438e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Automation
82 rdf:type schema:DefinedTerm
83 N1254629aa5394ca3a674bfb609fe07c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Receptors, Progesterone
85 rdf:type schema:DefinedTerm
86 N1d3b6685bdef4980b119d9472ca4bba6 schema:name doi
87 schema:value 10.1007/s10549-008-0063-9
88 rdf:type schema:PropertyValue
89 N2b1d6c3d752e4e549f844edf3c85636c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Female
91 rdf:type schema:DefinedTerm
92 N31b98c5fcfed483d9e1dceb0b45c6065 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N477685e0038f4c01a99b35994ed8b26b rdf:first sg:person.0730432025.28
95 rdf:rest Ncc294530e4a24d2289d5d45ecbe0684c
96 N48f863ace82f4860973ac172557f306a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Regression Analysis
98 rdf:type schema:DefinedTerm
99 N533cf7c7869a4524810a92e7ada2e0b3 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N5bb02c856a47400db259fb99b5b5aaae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Biomarkers, Tumor
103 rdf:type schema:DefinedTerm
104 N5d1682dc63cb4c1e989589e5bb17884a schema:name pubmed_id
105 schema:value 18521745
106 rdf:type schema:PropertyValue
107 N607aaa815034441cb3347cf7dd60390b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Receptors, Estrogen
109 rdf:type schema:DefinedTerm
110 N68d17cf1872c47a6adaa2054b47aa946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Treatment Outcome
112 rdf:type schema:DefinedTerm
113 N6fdd6a2e6b3741da92654caaa9e27105 rdf:first sg:person.012367147604.10
114 rdf:rest N00ca6cc5c9bb4b7bb25e703860acef0a
115 N76ec802dd9ff4bd59836d8a04d22136f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Prognosis
117 rdf:type schema:DefinedTerm
118 N84ead07026db4242a9296f04820cd9a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Oligonucleotide Array Sequence Analysis
120 rdf:type schema:DefinedTerm
121 N90fab67223b3403c9f04fc60a7a87d87 schema:name readcube_id
122 schema:value ed0a73a54c96a7f305463684edda16aa5dd12b375d16e34f80106f5d4b488b2b
123 rdf:type schema:PropertyValue
124 N9a618f4141f449afadaec8f3ba621c11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Nuclear Receptor Coactivator 3
126 rdf:type schema:DefinedTerm
127 Na29aceaccb9444efbc3c68a1b96f88ee schema:name nlm_unique_id
128 schema:value 8111104
129 rdf:type schema:PropertyValue
130 Nac603ffba9f643f1a100fc959e128dfe schema:volumeNumber 115
131 rdf:type schema:PublicationVolume
132 Naecb0d65d10a40e8abd8755d5b5ba9c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Multivariate Analysis
134 rdf:type schema:DefinedTerm
135 Nba5823b95ed44e46b0365889d4a9bb81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Gene Expression Regulation, Neoplastic
137 rdf:type schema:DefinedTerm
138 Nbbef3d86bac74d06ae0c2081e16d541a rdf:first Neccf3960b184470ea6026a0ea806b873
139 rdf:rest N477685e0038f4c01a99b35994ed8b26b
140 Nc3336dc0c0344120aa0080c6657adbc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Breast Neoplasms
142 rdf:type schema:DefinedTerm
143 Nc8cee904282649bfa93389c46787a702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Algorithms
145 rdf:type schema:DefinedTerm
146 Ncc294530e4a24d2289d5d45ecbe0684c rdf:first sg:person.01336552123.46
147 rdf:rest N6fdd6a2e6b3741da92654caaa9e27105
148 Ncfabc2250df7403f8bbecdcaadc0823b schema:name dimensions_id
149 schema:value pub.1049759937
150 rdf:type schema:PropertyValue
151 Nd6e4ecea424c443c813c3a322a6211f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Transcription Factors
153 rdf:type schema:DefinedTerm
154 Nde05965d02f94065a2e10f281c597a3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Humans
156 rdf:type schema:DefinedTerm
157 Neba905939ccf426eaeac1688908523e2 rdf:first sg:person.01332175135.22
158 rdf:rest Nbbef3d86bac74d06ae0c2081e16d541a
159 Neccf3960b184470ea6026a0ea806b873 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
160 schema:familyName Heymann
161 schema:givenName Jonas
162 rdf:type schema:Person
163 Nf57819b7cfde41608a80509cda387913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Proportional Hazards Models
165 rdf:type schema:DefinedTerm
166 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
167 schema:name Medical and Health Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
170 schema:name Oncology and Carcinogenesis
171 rdf:type schema:DefinedTerm
172 sg:grant.2631746 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-008-0063-9
173 rdf:type schema:MonetaryGrant
174 sg:grant.2631768 http://pending.schema.org/fundedItem sg:pub.10.1007/s10549-008-0063-9
175 rdf:type schema:MonetaryGrant
176 sg:journal.1092777 schema:issn 0167-6806
177 1573-7217
178 schema:name Breast Cancer Research and Treatment
179 rdf:type schema:Periodical
180 sg:person.012367147604.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
181 schema:familyName Camp
182 schema:givenName Robert L.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10
184 rdf:type schema:Person
185 sg:person.01332175135.22 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
186 schema:familyName Harigopal
187 schema:givenName Malini
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332175135.22
189 rdf:type schema:Person
190 sg:person.01336552123.46 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
191 schema:familyName Anagnostou
192 schema:givenName Valsamo
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336552123.46
194 rdf:type schema:Person
195 sg:person.0730432025.28 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
196 schema:familyName Ghosh
197 schema:givenName Sriparna
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730432025.28
199 rdf:type schema:Person
200 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
201 schema:familyName Rimm
202 schema:givenName David L.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
204 rdf:type schema:Person
205 sg:pub.10.1007/bf00666157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009738931
206 https://doi.org/10.1007/bf00666157
207 rdf:type schema:CreativeWork
208 sg:pub.10.1023/a:1012972808558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043763741
209 https://doi.org/10.1023/a:1012972808558
210 rdf:type schema:CreativeWork
211 sg:pub.10.1023/a:1017910924390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035314438
212 https://doi.org/10.1023/a:1017910924390
213 rdf:type schema:CreativeWork
214 sg:pub.10.1023/a:1022930710850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015086740
215 https://doi.org/10.1023/a:1022930710850
216 rdf:type schema:CreativeWork
217 sg:pub.10.1023/a:1024916126532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034849483
218 https://doi.org/10.1023/a:1024916126532
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
221 https://doi.org/10.1038/nm791
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1471-2407-3-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531789
224 https://doi.org/10.1186/1471-2407-3-22
225 rdf:type schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1074595998 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1074701732 schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1074735178 schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1074775095 schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1075262311 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1075266189 schema:CreativeWork
232 https://app.dimensions.ai/details/publication/pub.1077267208 schema:CreativeWork
233 https://app.dimensions.ai/details/publication/pub.1082941410 schema:CreativeWork
234 https://app.dimensions.ai/details/publication/pub.1083366864 schema:CreativeWork
235 https://doi.org/10.1016/0960-0760(95)00269-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028987437
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.humpath.2005.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017759986
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0960-9776(03)00137-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004330685
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1074/jbc.m104744200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013229024
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1080/07853890310014579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034380291
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/jnci/95.5.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004217721
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1126/science.277.5328.965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557688
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1128/mcb.20.14.5041-5047.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006649837
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1158/1078-0432.ccr-031212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063224761
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1158/1078-0432.ccr-04-0561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009671240
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1158/1078-0432.ccr-04-0713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031102903
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1158/1078-0432.ccr-06-1933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010690117
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1177/172460080101600301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074896004
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1200/jco.2005.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026772272
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1200/jco.2006.08.9938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036474381
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1615/critrevoncog.v8.i1.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068132663
266 rdf:type schema:CreativeWork
267 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
268 schema:name Yale University School of Medicine, 310 Cedar St., BML 169, 06510, New Haven, CT, USA
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...