Does computer-aided detection (CAD) contribute to the performance of digital mammography in a self-referred population? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10-16

AUTHORS

Beniamino Brancato, Nehmat Houssami, Damiana Francesca, Simonetta Bianchi, Gabriella Risso, Sandra Catarzi, Renzo Taschini, Marco Rosselli Del Turco, Stefano Ciatto

ABSTRACT

Background Recent evidence suggests that computer-aided detection (CAD) may have a negative impact on the interpretation of mammography—this necessitates timely evaluation of CAD in practice. We report a retrospective study of the incremental effect of CAD on the accuracy of full-field digital mammography (DM) as applied prospectively in breast assessment. Methods: Subjects were all consecutive women attending a self-referral breast centre in Florence between September 2005 and January 2007 (N = 3,425). DM was reported without, then with, CAD according to a standard protocol; all mammograms recalled on the basis of either the radiologist’s reading alone, or the radiologist’s reading after viewing CAD, were recalled to assessment. Results Overall recall rate (RR) was 13.1% and 107 cancers were diagnosed (90 invasive cancers, 8 DCIS, 9 malignant on cytology). The use of CAD allowed the additional detection of 5 cancers (three invasive cancers, one DCIS, one malignant on cytology) and caused one additional benign surgical biopsy, with a relative RR of 4.9%, and an incremental RR of 1.17%. The cancer detection rate (CDR) of DM interpreted with the use of CAD was 3.12% and did not significantly differ from the CDR of 2.9% based on DM without CAD (χ2 = 3.2, P = 0.07). Conclusion While the increase in CDR with the use of CAD only approached statistical significance, representing modest gains in absolute terms, the incremental number of cancers detected justifies the incremental recall and benign surgical biopsy attributable to CAD use. In our clinical setting, these data suggest more benefit than harm in using CAD with DM, and we will continue the use of CAD with ongoing monitoring of patient outcomes. More... »

PAGES

373-376

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-007-9786-2

DOI

http://dx.doi.org/10.1007/s10549-007-9786-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030780746

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17939035


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Physician Self-Referral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brancato", 
        "givenName": "Beniamino", 
        "id": "sg:person.01167417670.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167417670.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Screening and Test Evaluation Program (STEP), School of Public Health, University of Sydney, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Screening and Test Evaluation Program (STEP), School of Public Health, University of Sydney, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houssami", 
        "givenName": "Nehmat", 
        "id": "sg:person.0747474743.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747474743.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francesca", 
        "givenName": "Damiana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Anatomia Patologica, Universit\u00e0 degli Studi, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Istituto di Anatomia Patologica, Universit\u00e0 degli Studi, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bianchi", 
        "givenName": "Simonetta", 
        "id": "sg:person.07675154000.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675154000.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Risso", 
        "givenName": "Gabriella", 
        "id": "sg:person.01303646270.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303646270.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Catarzi", 
        "givenName": "Sandra", 
        "id": "sg:person.01340502356.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340502356.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taschini", 
        "givenName": "Renzo", 
        "id": "sg:person.01071642443.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071642443.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosselli Del Turco", 
        "givenName": "Marco", 
        "id": "sg:person.01130361074.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130361074.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.417623.5", 
          "name": [
            "Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciatto", 
        "givenName": "Stefano", 
        "id": "sg:person.01174274056.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174274056.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10549-005-9126-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007059279", 
          "https://doi.org/10.1007/s10549-005-9126-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10-16", 
    "datePublishedReg": "2007-10-16", 
    "description": "Background Recent evidence suggests that computer-aided detection (CAD) may have a negative impact on the interpretation of mammography\u2014this necessitates timely evaluation of CAD in practice. We report a retrospective study of the incremental effect of CAD on the accuracy of full-field digital mammography (DM) as applied prospectively in breast assessment. Methods: Subjects were all consecutive women attending a self-referral breast centre in Florence between September 2005 and January 2007 (N\u00a0=\u00a03,425). DM was reported without, then with, CAD according to a standard protocol; all mammograms recalled on the basis of either the radiologist\u2019s reading alone, or the radiologist\u2019s reading after viewing CAD, were recalled to assessment. Results Overall recall rate (RR) was 13.1% and 107 cancers were diagnosed (90 invasive cancers, 8 DCIS, 9 malignant on cytology). The use of CAD allowed the additional detection of 5 cancers (three invasive cancers, one DCIS, one malignant on cytology) and caused one additional benign surgical biopsy, with a relative RR of 4.9%, and an incremental RR of 1.17%. The cancer detection rate (CDR) of DM interpreted with the use of CAD was 3.12% and did not significantly differ from the CDR of 2.9% based on DM without CAD (\u03c72\u00a0=\u00a03.2, P\u00a0=\u00a00.07). Conclusion While the increase in CDR with the use of CAD only approached statistical significance, representing modest gains in absolute terms, the incremental number of cancers detected justifies the incremental recall and benign surgical biopsy attributable to CAD use. In our clinical setting, these data suggest more benefit than harm in using CAD with DM, and we will continue the use of CAD with ongoing monitoring of patient outcomes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10549-007-9786-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "111"
      }
    ], 
    "keywords": [
      "cancer detection rate", 
      "benign surgical biopsies", 
      "use of CAD", 
      "surgical biopsy", 
      "self-referred population", 
      "Background Recent evidence", 
      "overall recall rate", 
      "consecutive women", 
      "retrospective study", 
      "patient outcomes", 
      "breast center", 
      "computer-aided detection", 
      "interpretation of mammography", 
      "clinical setting", 
      "digital mammography", 
      "radiologists' readings", 
      "cancer", 
      "breast assessment", 
      "statistical significance", 
      "Recent evidence", 
      "biopsy", 
      "timely evaluation", 
      "ongoing monitoring", 
      "mammography", 
      "standard protocol", 
      "full-field digital mammography", 
      "incremental number", 
      "detection rate", 
      "additional detection", 
      "incremental effect", 
      "women", 
      "modest gains", 
      "assessment", 
      "more benefits", 
      "outcomes", 
      "radiologists", 
      "absolute terms", 
      "subjects", 
      "use", 
      "mammograms", 
      "rate", 
      "conclusion", 
      "population", 
      "harm", 
      "setting", 
      "detection", 
      "negative impact", 
      "evidence", 
      "recall rate", 
      "significance", 
      "evaluation", 
      "study", 
      "center", 
      "protocol", 
      "benefits", 
      "increase", 
      "effect", 
      "recall", 
      "monitoring", 
      "practice", 
      "justifies", 
      "data", 
      "number", 
      "impact", 
      "gain", 
      "CAD use", 
      "basis", 
      "reading", 
      "Florence", 
      "interpretation", 
      "terms", 
      "accuracy", 
      "performance"
    ], 
    "name": "Does computer-aided detection (CAD) contribute to the performance of digital mammography in a self-referred population?", 
    "pagination": "373-376", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030780746"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-007-9786-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17939035"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-007-9786-2", 
      "https://app.dimensions.ai/details/publication/pub.1030780746"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_439.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10549-007-9786-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-007-9786-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-007-9786-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-007-9786-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-007-9786-2'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      110 URIs      101 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-007-9786-2 schema:about N009454ecfd1b497f865272c8b3ad6f1e
2 N0c7f2a3108cb4e9597252f7f8c7f8032
3 N225b2f853f604da6a83a04e1970962ed
4 N3c0d6c3ddcd44227ba7663cdb6361f34
5 N514b772015e54725882f3d62e7356bce
6 N56dbe4635d2f49e884cbde7da9e9eb32
7 N7d514eda40b646b085bc7bc23fe7f5ca
8 N80dad74fc8c84c5a864ef75679c174b0
9 Nf296fc66f2bd4248839b6bcea9144817
10 Nfcb47e80e98c4594b06aae3d075c32c7
11 anzsrc-for:11
12 anzsrc-for:1117
13 schema:author N93e6688535f94d45be067d7e678cb124
14 schema:citation sg:pub.10.1007/s10549-005-9126-3
15 schema:datePublished 2007-10-16
16 schema:datePublishedReg 2007-10-16
17 schema:description Background Recent evidence suggests that computer-aided detection (CAD) may have a negative impact on the interpretation of mammography—this necessitates timely evaluation of CAD in practice. We report a retrospective study of the incremental effect of CAD on the accuracy of full-field digital mammography (DM) as applied prospectively in breast assessment. Methods: Subjects were all consecutive women attending a self-referral breast centre in Florence between September 2005 and January 2007 (N = 3,425). DM was reported without, then with, CAD according to a standard protocol; all mammograms recalled on the basis of either the radiologist’s reading alone, or the radiologist’s reading after viewing CAD, were recalled to assessment. Results Overall recall rate (RR) was 13.1% and 107 cancers were diagnosed (90 invasive cancers, 8 DCIS, 9 malignant on cytology). The use of CAD allowed the additional detection of 5 cancers (three invasive cancers, one DCIS, one malignant on cytology) and caused one additional benign surgical biopsy, with a relative RR of 4.9%, and an incremental RR of 1.17%. The cancer detection rate (CDR) of DM interpreted with the use of CAD was 3.12% and did not significantly differ from the CDR of 2.9% based on DM without CAD (χ2 = 3.2, P = 0.07). Conclusion While the increase in CDR with the use of CAD only approached statistical significance, representing modest gains in absolute terms, the incremental number of cancers detected justifies the incremental recall and benign surgical biopsy attributable to CAD use. In our clinical setting, these data suggest more benefit than harm in using CAD with DM, and we will continue the use of CAD with ongoing monitoring of patient outcomes.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N451890fbbb5a4c588e60e93b00907dc0
22 N858fb4e764b045128958e44d2f87315f
23 sg:journal.1092777
24 schema:keywords Background Recent evidence
25 CAD use
26 Florence
27 Recent evidence
28 absolute terms
29 accuracy
30 additional detection
31 assessment
32 basis
33 benefits
34 benign surgical biopsies
35 biopsy
36 breast assessment
37 breast center
38 cancer
39 cancer detection rate
40 center
41 clinical setting
42 computer-aided detection
43 conclusion
44 consecutive women
45 data
46 detection
47 detection rate
48 digital mammography
49 effect
50 evaluation
51 evidence
52 full-field digital mammography
53 gain
54 harm
55 impact
56 increase
57 incremental effect
58 incremental number
59 interpretation
60 interpretation of mammography
61 justifies
62 mammograms
63 mammography
64 modest gains
65 monitoring
66 more benefits
67 negative impact
68 number
69 ongoing monitoring
70 outcomes
71 overall recall rate
72 patient outcomes
73 performance
74 population
75 practice
76 protocol
77 radiologists
78 radiologists' readings
79 rate
80 reading
81 recall
82 recall rate
83 retrospective study
84 self-referred population
85 setting
86 significance
87 standard protocol
88 statistical significance
89 study
90 subjects
91 surgical biopsy
92 terms
93 timely evaluation
94 use
95 use of CAD
96 women
97 schema:name Does computer-aided detection (CAD) contribute to the performance of digital mammography in a self-referred population?
98 schema:pagination 373-376
99 schema:productId N74d16447613344f0a1a8b34c0e738092
100 N767c3abb85a448f2955ffdedb5d12a20
101 N8ff4628ab41b47dea57a6302c5b79a98
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030780746
103 https://doi.org/10.1007/s10549-007-9786-2
104 schema:sdDatePublished 2022-05-20T07:24
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N1b006bc64c1e4793bbe5c9e279c41619
107 schema:url https://doi.org/10.1007/s10549-007-9786-2
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N009454ecfd1b497f865272c8b3ad6f1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Breast Neoplasms
113 rdf:type schema:DefinedTerm
114 N0c7f2a3108cb4e9597252f7f8c7f8032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Middle Aged
116 rdf:type schema:DefinedTerm
117 N1b006bc64c1e4793bbe5c9e279c41619 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N225b2f853f604da6a83a04e1970962ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Diagnosis, Computer-Assisted
121 rdf:type schema:DefinedTerm
122 N2c873968a4ad4d92b7d2f3bcc4e09b38 rdf:first sg:person.07675154000.55
123 rdf:rest Nc3b917f9c3774b66beab3c486aaa39c9
124 N3c0d6c3ddcd44227ba7663cdb6361f34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Mammography
126 rdf:type schema:DefinedTerm
127 N451890fbbb5a4c588e60e93b00907dc0 schema:volumeNumber 111
128 rdf:type schema:PublicationVolume
129 N514b772015e54725882f3d62e7356bce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Adult
131 rdf:type schema:DefinedTerm
132 N524a5695d488423092460f571db34501 rdf:first sg:person.01174274056.26
133 rdf:rest rdf:nil
134 N56dbe4635d2f49e884cbde7da9e9eb32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Humans
136 rdf:type schema:DefinedTerm
137 N656c697d93cd404394bafd457a52d448 rdf:first sg:person.01340502356.24
138 rdf:rest Ndcdec90628f74ed486d7ba7ebab0581b
139 N74d16447613344f0a1a8b34c0e738092 schema:name pubmed_id
140 schema:value 17939035
141 rdf:type schema:PropertyValue
142 N767c3abb85a448f2955ffdedb5d12a20 schema:name doi
143 schema:value 10.1007/s10549-007-9786-2
144 rdf:type schema:PropertyValue
145 N7d514eda40b646b085bc7bc23fe7f5ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Female
147 rdf:type schema:DefinedTerm
148 N80dad74fc8c84c5a864ef75679c174b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Retrospective Studies
150 rdf:type schema:DefinedTerm
151 N858fb4e764b045128958e44d2f87315f schema:issueNumber 2
152 rdf:type schema:PublicationIssue
153 N8ff4628ab41b47dea57a6302c5b79a98 schema:name dimensions_id
154 schema:value pub.1030780746
155 rdf:type schema:PropertyValue
156 N93e6688535f94d45be067d7e678cb124 rdf:first sg:person.01167417670.10
157 rdf:rest Nbdb788d1415748ccbf754710836abb02
158 Nabd049c87f8345d7a4c1a53466db13b1 rdf:first sg:person.01130361074.02
159 rdf:rest N524a5695d488423092460f571db34501
160 Nbdb788d1415748ccbf754710836abb02 rdf:first sg:person.0747474743.39
161 rdf:rest Nfef5ac359d3d42618f27dbbe8e9dea2d
162 Nc3b917f9c3774b66beab3c486aaa39c9 rdf:first sg:person.01303646270.12
163 rdf:rest N656c697d93cd404394bafd457a52d448
164 Ndabaf2532217484197b344256ce58188 schema:affiliation grid-institutes:grid.417623.5
165 schema:familyName Francesca
166 schema:givenName Damiana
167 rdf:type schema:Person
168 Ndcdec90628f74ed486d7ba7ebab0581b rdf:first sg:person.01071642443.25
169 rdf:rest Nabd049c87f8345d7a4c1a53466db13b1
170 Nf296fc66f2bd4248839b6bcea9144817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Physician Self-Referral
172 rdf:type schema:DefinedTerm
173 Nfcb47e80e98c4594b06aae3d075c32c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Aged
175 rdf:type schema:DefinedTerm
176 Nfef5ac359d3d42618f27dbbe8e9dea2d rdf:first Ndabaf2532217484197b344256ce58188
177 rdf:rest N2c873968a4ad4d92b7d2f3bcc4e09b38
178 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
179 schema:name Medical and Health Sciences
180 rdf:type schema:DefinedTerm
181 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
182 schema:name Public Health and Health Services
183 rdf:type schema:DefinedTerm
184 sg:journal.1092777 schema:issn 0167-6806
185 1573-7217
186 schema:name Breast Cancer Research and Treatment
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.01071642443.25 schema:affiliation grid-institutes:grid.417623.5
190 schema:familyName Taschini
191 schema:givenName Renzo
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071642443.25
193 rdf:type schema:Person
194 sg:person.01130361074.02 schema:affiliation grid-institutes:grid.417623.5
195 schema:familyName Rosselli Del Turco
196 schema:givenName Marco
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130361074.02
198 rdf:type schema:Person
199 sg:person.01167417670.10 schema:affiliation grid-institutes:grid.417623.5
200 schema:familyName Brancato
201 schema:givenName Beniamino
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167417670.10
203 rdf:type schema:Person
204 sg:person.01174274056.26 schema:affiliation grid-institutes:grid.417623.5
205 schema:familyName Ciatto
206 schema:givenName Stefano
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174274056.26
208 rdf:type schema:Person
209 sg:person.01303646270.12 schema:affiliation grid-institutes:grid.417623.5
210 schema:familyName Risso
211 schema:givenName Gabriella
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303646270.12
213 rdf:type schema:Person
214 sg:person.01340502356.24 schema:affiliation grid-institutes:grid.417623.5
215 schema:familyName Catarzi
216 schema:givenName Sandra
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340502356.24
218 rdf:type schema:Person
219 sg:person.0747474743.39 schema:affiliation grid-institutes:grid.1013.3
220 schema:familyName Houssami
221 schema:givenName Nehmat
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747474743.39
223 rdf:type schema:Person
224 sg:person.07675154000.55 schema:affiliation grid-institutes:grid.8404.8
225 schema:familyName Bianchi
226 schema:givenName Simonetta
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675154000.55
228 rdf:type schema:Person
229 sg:pub.10.1007/s10549-005-9126-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007059279
230 https://doi.org/10.1007/s10549-005-9126-3
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.1013.3 schema:alternateName Screening and Test Evaluation Program (STEP), School of Public Health, University of Sydney, Sydney, Australia
233 schema:name Screening and Test Evaluation Program (STEP), School of Public Health, University of Sydney, Sydney, Australia
234 rdf:type schema:Organization
235 grid-institutes:grid.417623.5 schema:alternateName Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy
236 schema:name Centro per lo Studio e la Prevenzione Oncologica (CSPO), Tuscany Cancer Institute, Viale A. Volta 171, 50131, Florence, Italy
237 rdf:type schema:Organization
238 grid-institutes:grid.8404.8 schema:alternateName Istituto di Anatomia Patologica, Università degli Studi, Florence, Italy
239 schema:name Istituto di Anatomia Patologica, Università degli Studi, Florence, Italy
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...