Factors affecting failed localisation and false-negative rates of sentinel node biopsy in breast cancer – results of the ALMANAC validation ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09

AUTHORS

Amit Goyal, Robert G Newcombe, Alok Chhabra, Robert E Mansel, on behalf of the ALMANAC Trialists Group

ABSTRACT

BACKGROUND: Despite the widespread application of sentinel lymph node biopsy (SLNB) for early stage breast cancer, there is a wide variation in reported test performance characteristics. A major aim of this prospective multicentre validation study was to quantify detection and false-negative rates of SLNB and evaluate factors influencing them. METHODS: Eight-hundred and fourty-two patients with clinically node-negative breast cancer underwent SLNB according to a standardised protocol that used a combination of radiopharmaceutical 99mTc-albumin colloid and Patent Blue V dye. SLNB was followed by standard axillary treatment at the same operation in all patients. RESULTS: Sentinel lymph nodes (SLNs) were identified in 803 (96.1%) of 836 evaluable cases. The median number of SLNs removed per patient was 2 (range 1-9). There were 19 false negatives, resulting in a sensitivity of 263/282 (93.3%) and accuracy 782/803 (97.6%). SLNs were successfully identified by blue dye in 698 (85.6%), by isotope in 698 (85.6%), and by the combination of blue dye and isotope in 782 (96.0%) of 815 patients. Among 276 node positive patients, one or more positive SLNs were identified by blue dye in 251 (90.9%), by isotope in 246 (89.1%) and by the combination of blue dye and gamma probe in 258 (93.5%). Obesity, tumor location other than upper outer quadrant and non-visualisation of SLNs on the pre-operative lymphoscintiscan were significantly associated with failed localisation (p<0.001, p=0.008, p<0.001, respectively). The false-negative rate in patients with grade 3 tumors was 9.6%, compared with 4.7% in those with grade 2 tumors (p=0.022). The false-negative rate in patients who had one SLN harvested was 10.1%, compared with 1.1% in those who had multiple SLNs (three or more) removed (p=0.010). CONCLUSION: SLNB can accurately determine whether axillary metastases are present in patients with early stage breast cancer with clinically negative axillary nodes. Both success and accuracy of SLNB are optimised by the combined use of blue dye and isotope. SLNB success decreases with increasing body mass, tumor location other than the upper outer quadrant and non-visualisation of hot nodes on the pre-operative lymphoscintiscan. This study demonstrates reduction in the predictive value of a negative SLNB in grade 3 tumors. More... »

PAGES

203-208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-006-9192-1

DOI

http://dx.doi.org/10.1007/s10549-006-9192-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004780866

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16541308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Axilla", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Ductal, Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Lobular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "False Negative Reactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Invasiveness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radionuclide Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rosaniline Dyes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sentinel Lymph Node Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technetium Tc 99m Aggregated Albumin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cardiff University", 
          "id": "https://www.grid.ac/institutes/grid.5600.3", 
          "name": [
            "Department of Surgery, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goyal", 
        "givenName": "Amit", 
        "id": "sg:person.01036121412.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036121412.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiff University", 
          "id": "https://www.grid.ac/institutes/grid.5600.3", 
          "name": [
            "Department of Epidemiology, Statistics and Public Health, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newcombe", 
        "givenName": "Robert G", 
        "id": "sg:person.01005064162.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005064162.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiff University", 
          "id": "https://www.grid.ac/institutes/grid.5600.3", 
          "name": [
            "Department of Surgery, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chhabra", 
        "givenName": "Alok", 
        "id": "sg:person.0613136345.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613136345.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiff University", 
          "id": "https://www.grid.ac/institutes/grid.5600.3", 
          "name": [
            "Department of Surgery, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom", 
            "Department of Surgery, Wales College of Medicine, Cardiff University, CF14 4XN, Cardiff, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansel", 
        "givenName": "Robert E", 
        "id": "sg:person.01030073651.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030073651.43"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "on behalf of the ALMANAC Trialists Group", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1046/j.1524-4741.2002.08203.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008912767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.220.1.r01jn2347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011124013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejso.2003.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012375803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0007-1323.2001.01948.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejso.2004.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014122875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.seminoncol.2004.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033138091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.seminoncol.2004.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033138091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1075-122x.2005.21591.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035350913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200101000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037979955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200101000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037979955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1072-7515(01)01038-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039915464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.5211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046214242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.5211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046214242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2003.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048250653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200109000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048651379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200109000-00003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048651379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa012782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052774494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199904000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199904000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199904000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-199904000-00012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060135011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/aso.2004.12.924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064470759", 
          "https://doi.org/10.1245/aso.2004.12.924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/aso.2004.12.924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064470759", 
          "https://doi.org/10.1245/aso.2004.12.924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/aso.2004.12.924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064470759", 
          "https://doi.org/10.1245/aso.2004.12.924"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-09", 
    "datePublishedReg": "2006-09-01", 
    "description": "BACKGROUND: Despite the widespread application of sentinel lymph node biopsy (SLNB) for early stage breast cancer, there is a wide variation in reported test performance characteristics. A major aim of this prospective multicentre validation study was to quantify detection and false-negative rates of SLNB and evaluate factors influencing them.\nMETHODS: Eight-hundred and fourty-two patients with clinically node-negative breast cancer underwent SLNB according to a standardised protocol that used a combination of radiopharmaceutical 99mTc-albumin colloid and Patent Blue V dye. SLNB was followed by standard axillary treatment at the same operation in all patients.\nRESULTS: Sentinel lymph nodes (SLNs) were identified in 803 (96.1%) of 836 evaluable cases. The median number of SLNs removed per patient was 2 (range 1-9). There were 19 false negatives, resulting in a sensitivity of 263/282 (93.3%) and accuracy 782/803 (97.6%). SLNs were successfully identified by blue dye in 698 (85.6%), by isotope in 698 (85.6%), and by the combination of blue dye and isotope in 782 (96.0%) of 815 patients. Among 276 node positive patients, one or more positive SLNs were identified by blue dye in 251 (90.9%), by isotope in 246 (89.1%) and by the combination of blue dye and gamma probe in 258 (93.5%). Obesity, tumor location other than upper outer quadrant and non-visualisation of SLNs on the pre-operative lymphoscintiscan were significantly associated with failed localisation (p<0.001, p=0.008, p<0.001, respectively). The false-negative rate in patients with grade 3 tumors was 9.6%, compared with 4.7% in those with grade 2 tumors (p=0.022). The false-negative rate in patients who had one SLN harvested was 10.1%, compared with 1.1% in those who had multiple SLNs (three or more) removed (p=0.010).\nCONCLUSION: SLNB can accurately determine whether axillary metastases are present in patients with early stage breast cancer with clinically negative axillary nodes. Both success and accuracy of SLNB are optimised by the combined use of blue dye and isotope. SLNB success decreases with increasing body mass, tumor location other than the upper outer quadrant and non-visualisation of hot nodes on the pre-operative lymphoscintiscan. This study demonstrates reduction in the predictive value of a negative SLNB in grade 3 tumors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-006-9192-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "name": "Factors affecting failed localisation and false-negative rates of sentinel node biopsy in breast cancer \u2013 results of the ALMANAC validation phase", 
    "pagination": "203-208", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16c7a7a14716e79f51d0f700921198b3af3619ebbc177bcb8b319e49e3806bfd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16541308"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-006-9192-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004780866"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-006-9192-1", 
      "https://app.dimensions.ai/details/publication/pub.1004780866"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71692_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10549-006-9192-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-006-9192-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-006-9192-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-006-9192-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-006-9192-1'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      68 URIs      45 LITERALS      33 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-006-9192-1 schema:about N00c7c331408a46b3b3506b5a64e2c937
2 N02bb513a02ab41f2b3590857a271399d
3 N0cc57af1b3f8409ba170b1adc89ac64c
4 N11707d0f3d844ed6a098fa7728f00006
5 N19202da1c7a04e739182d8f66a447bf0
6 N1a3ea7ea7b334150864b9809e2f4ad77
7 N1a4d0b97ba1c4d0ca8602d3605675683
8 N1eabf3d3b0aa469a854e045d0620ded0
9 N2a33541209d641abb56aa23400be16be
10 N3643dd23651e41149d6a4ebe6137bdf2
11 N51eb45a3774e447588e9788456eafcb4
12 N53651558344b424e876fef284928fd89
13 N71916bea9e344ec7860355a3e22afbaa
14 N71ba175b51ad41caabc5d7711ff60103
15 N9c858591e4d54c8b872b19cdd3f56e7e
16 Na809206ebb1346c58504f10a78d52bd2
17 Nadea3590d00c4923979a6aa7bac8c42f
18 Nc54153e693e84f5eabdbf138fc46cc16
19 Ncb39960fd02e45ada838147ab2e15122
20 Ncbfa07c38f2c41ef9e0f6029372616ae
21 Nd3e29e4a939241e8a9be6a3ccccedfe1
22 Nd67f63e24bb946dea591c2746cdbc252
23 Ne06220b225994c66b61925a1be3b2e13
24 Nfde4915dc2e943678ffb78d5544b733d
25 anzsrc-for:11
26 anzsrc-for:1112
27 schema:author Nccfa0b229a4e45c580a19bb4a9ac1bd8
28 schema:citation sg:pub.10.1245/aso.2004.12.924
29 https://doi.org/10.1002/bjs.5211
30 https://doi.org/10.1016/j.ejso.2003.11.016
31 https://doi.org/10.1016/j.ejso.2004.02.006
32 https://doi.org/10.1016/j.jamcollsurg.2003.08.005
33 https://doi.org/10.1016/s1072-7515(01)01038-9
34 https://doi.org/10.1046/j.0007-1323.2001.01948.x
35 https://doi.org/10.1046/j.1524-4741.2002.08203.x
36 https://doi.org/10.1053/j.seminoncol.2004.03.003
37 https://doi.org/10.1056/nejmoa012782
38 https://doi.org/10.1097/00000658-199904000-00012
39 https://doi.org/10.1097/00000658-200101000-00009
40 https://doi.org/10.1097/00000658-200109000-00003
41 https://doi.org/10.1111/j.1075-122x.2005.21591.x
42 https://doi.org/10.1148/radiology.220.1.r01jn2347
43 schema:datePublished 2006-09
44 schema:datePublishedReg 2006-09-01
45 schema:description BACKGROUND: Despite the widespread application of sentinel lymph node biopsy (SLNB) for early stage breast cancer, there is a wide variation in reported test performance characteristics. A major aim of this prospective multicentre validation study was to quantify detection and false-negative rates of SLNB and evaluate factors influencing them. METHODS: Eight-hundred and fourty-two patients with clinically node-negative breast cancer underwent SLNB according to a standardised protocol that used a combination of radiopharmaceutical 99mTc-albumin colloid and Patent Blue V dye. SLNB was followed by standard axillary treatment at the same operation in all patients. RESULTS: Sentinel lymph nodes (SLNs) were identified in 803 (96.1%) of 836 evaluable cases. The median number of SLNs removed per patient was 2 (range 1-9). There were 19 false negatives, resulting in a sensitivity of 263/282 (93.3%) and accuracy 782/803 (97.6%). SLNs were successfully identified by blue dye in 698 (85.6%), by isotope in 698 (85.6%), and by the combination of blue dye and isotope in 782 (96.0%) of 815 patients. Among 276 node positive patients, one or more positive SLNs were identified by blue dye in 251 (90.9%), by isotope in 246 (89.1%) and by the combination of blue dye and gamma probe in 258 (93.5%). Obesity, tumor location other than upper outer quadrant and non-visualisation of SLNs on the pre-operative lymphoscintiscan were significantly associated with failed localisation (p<0.001, p=0.008, p<0.001, respectively). The false-negative rate in patients with grade 3 tumors was 9.6%, compared with 4.7% in those with grade 2 tumors (p=0.022). The false-negative rate in patients who had one SLN harvested was 10.1%, compared with 1.1% in those who had multiple SLNs (three or more) removed (p=0.010). CONCLUSION: SLNB can accurately determine whether axillary metastases are present in patients with early stage breast cancer with clinically negative axillary nodes. Both success and accuracy of SLNB are optimised by the combined use of blue dye and isotope. SLNB success decreases with increasing body mass, tumor location other than the upper outer quadrant and non-visualisation of hot nodes on the pre-operative lymphoscintiscan. This study demonstrates reduction in the predictive value of a negative SLNB in grade 3 tumors.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N464d401d5a34430199ebf74c79c5c738
50 N940e70f0638f48328ad5fc5fc10afdb1
51 sg:journal.1092777
52 schema:name Factors affecting failed localisation and false-negative rates of sentinel node biopsy in breast cancer – results of the ALMANAC validation phase
53 schema:pagination 203-208
54 schema:productId N1607d8b4ed0d4ccc81915ac9cf4ce100
55 N1aaa7d3e54894e76b99375ad1294bf91
56 N348fa740edc94178b61305439ea3fd77
57 N3b221da73f5443099135d1e812045362
58 Ne23634ff2e8b48f9a6b1214e4f4bc193
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004780866
60 https://doi.org/10.1007/s10549-006-9192-1
61 schema:sdDatePublished 2019-04-11T12:59
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nab25c00567ac4ecbb47bde0c45c69c4b
64 schema:url http://link.springer.com/10.1007%2Fs10549-006-9192-1
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N00c7c331408a46b3b3506b5a64e2c937 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Neoplasm Invasiveness
70 rdf:type schema:DefinedTerm
71 N02bb513a02ab41f2b3590857a271399d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Humans
73 rdf:type schema:DefinedTerm
74 N0b67323e298c4229a4d54af0e42016d7 rdf:first sg:person.01005064162.19
75 rdf:rest Nb843610121c34d4ea2da85234a0c084e
76 N0cc57af1b3f8409ba170b1adc89ac64c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Predictive Value of Tests
78 rdf:type schema:DefinedTerm
79 N11707d0f3d844ed6a098fa7728f00006 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Lymph Nodes
81 rdf:type schema:DefinedTerm
82 N1607d8b4ed0d4ccc81915ac9cf4ce100 schema:name pubmed_id
83 schema:value 16541308
84 rdf:type schema:PropertyValue
85 N19202da1c7a04e739182d8f66a447bf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Risk Factors
87 rdf:type schema:DefinedTerm
88 N1a3ea7ea7b334150864b9809e2f4ad77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Technetium Tc 99m Aggregated Albumin
90 rdf:type schema:DefinedTerm
91 N1a4d0b97ba1c4d0ca8602d3605675683 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Adult
93 rdf:type schema:DefinedTerm
94 N1aaa7d3e54894e76b99375ad1294bf91 schema:name dimensions_id
95 schema:value pub.1004780866
96 rdf:type schema:PropertyValue
97 N1eabf3d3b0aa469a854e045d0620ded0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Axilla
99 rdf:type schema:DefinedTerm
100 N2a33541209d641abb56aa23400be16be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Carcinoma, Ductal, Breast
102 rdf:type schema:DefinedTerm
103 N2d1f0d2493be479e826743b9d3a13d27 schema:familyName on behalf of the ALMANAC Trialists Group
104 rdf:type schema:Person
105 N31a0d9eac1d1478e9b855131380c3cac rdf:first N2d1f0d2493be479e826743b9d3a13d27
106 rdf:rest rdf:nil
107 N348fa740edc94178b61305439ea3fd77 schema:name nlm_unique_id
108 schema:value 8111104
109 rdf:type schema:PropertyValue
110 N3643dd23651e41149d6a4ebe6137bdf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name False Negative Reactions
112 rdf:type schema:DefinedTerm
113 N3b221da73f5443099135d1e812045362 schema:name readcube_id
114 schema:value 16c7a7a14716e79f51d0f700921198b3af3619ebbc177bcb8b319e49e3806bfd
115 rdf:type schema:PropertyValue
116 N464d401d5a34430199ebf74c79c5c738 schema:issueNumber 2
117 rdf:type schema:PublicationIssue
118 N51eb45a3774e447588e9788456eafcb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Prospective Studies
120 rdf:type schema:DefinedTerm
121 N53651558344b424e876fef284928fd89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Female
123 rdf:type schema:DefinedTerm
124 N71916bea9e344ec7860355a3e22afbaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Radiopharmaceuticals
126 rdf:type schema:DefinedTerm
127 N71ba175b51ad41caabc5d7711ff60103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Neoplasm Recurrence, Local
129 rdf:type schema:DefinedTerm
130 N940e70f0638f48328ad5fc5fc10afdb1 schema:volumeNumber 99
131 rdf:type schema:PublicationVolume
132 N9c858591e4d54c8b872b19cdd3f56e7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Radionuclide Imaging
134 rdf:type schema:DefinedTerm
135 Na809206ebb1346c58504f10a78d52bd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Sentinel Lymph Node Biopsy
137 rdf:type schema:DefinedTerm
138 Nab25c00567ac4ecbb47bde0c45c69c4b schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nadea3590d00c4923979a6aa7bac8c42f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Aged, 80 and over
142 rdf:type schema:DefinedTerm
143 Nb843610121c34d4ea2da85234a0c084e rdf:first sg:person.0613136345.15
144 rdf:rest Nc5db93509cfd46e58a1cb7501c897aca
145 Nc54153e693e84f5eabdbf138fc46cc16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Rosaniline Dyes
147 rdf:type schema:DefinedTerm
148 Nc5db93509cfd46e58a1cb7501c897aca rdf:first sg:person.01030073651.43
149 rdf:rest N31a0d9eac1d1478e9b855131380c3cac
150 Ncb39960fd02e45ada838147ab2e15122 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Lymphatic Metastasis
152 rdf:type schema:DefinedTerm
153 Ncbfa07c38f2c41ef9e0f6029372616ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Aged
155 rdf:type schema:DefinedTerm
156 Nccfa0b229a4e45c580a19bb4a9ac1bd8 rdf:first sg:person.01036121412.33
157 rdf:rest N0b67323e298c4229a4d54af0e42016d7
158 Nd3e29e4a939241e8a9be6a3ccccedfe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Carcinoma, Lobular
160 rdf:type schema:DefinedTerm
161 Nd67f63e24bb946dea591c2746cdbc252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Neoplasm Staging
163 rdf:type schema:DefinedTerm
164 Ne06220b225994c66b61925a1be3b2e13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Breast Neoplasms
166 rdf:type schema:DefinedTerm
167 Ne23634ff2e8b48f9a6b1214e4f4bc193 schema:name doi
168 schema:value 10.1007/s10549-006-9192-1
169 rdf:type schema:PropertyValue
170 Nfde4915dc2e943678ffb78d5544b733d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Middle Aged
172 rdf:type schema:DefinedTerm
173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
174 schema:name Medical and Health Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
177 schema:name Oncology and Carcinogenesis
178 rdf:type schema:DefinedTerm
179 sg:journal.1092777 schema:issn 0167-6806
180 1573-7217
181 schema:name Breast Cancer Research and Treatment
182 rdf:type schema:Periodical
183 sg:person.01005064162.19 schema:affiliation https://www.grid.ac/institutes/grid.5600.3
184 schema:familyName Newcombe
185 schema:givenName Robert G
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005064162.19
187 rdf:type schema:Person
188 sg:person.01030073651.43 schema:affiliation https://www.grid.ac/institutes/grid.5600.3
189 schema:familyName Mansel
190 schema:givenName Robert E
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030073651.43
192 rdf:type schema:Person
193 sg:person.01036121412.33 schema:affiliation https://www.grid.ac/institutes/grid.5600.3
194 schema:familyName Goyal
195 schema:givenName Amit
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036121412.33
197 rdf:type schema:Person
198 sg:person.0613136345.15 schema:affiliation https://www.grid.ac/institutes/grid.5600.3
199 schema:familyName Chhabra
200 schema:givenName Alok
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613136345.15
202 rdf:type schema:Person
203 sg:pub.10.1245/aso.2004.12.924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064470759
204 https://doi.org/10.1245/aso.2004.12.924
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/bjs.5211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046214242
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.ejso.2003.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012375803
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.ejso.2004.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014122875
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.jamcollsurg.2003.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048250653
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s1072-7515(01)01038-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039915464
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1046/j.0007-1323.2001.01948.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901531
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1046/j.1524-4741.2002.08203.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008912767
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1053/j.seminoncol.2004.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033138091
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1056/nejmoa012782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052774494
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1097/00000658-199904000-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060135011
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1097/00000658-200101000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037979955
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1097/00000658-200109000-00003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048651379
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1111/j.1075-122x.2005.21591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035350913
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1148/radiology.220.1.r01jn2347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011124013
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.5600.3 schema:alternateName Cardiff University
235 schema:name Department of Epidemiology, Statistics and Public Health, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom
236 Department of Surgery, Wales College of Medicine, Cardiff University, CF14 4XN, Cardiff, United Kingdom
237 Department of Surgery, Wales College of Medicine, Cardiff University, Cardiff, United Kingdom
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...