Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-05

AUTHORS

Yasushi Nakamura, Hironao Yasuoka, Masahiko Tsujimoto, Shigeru Imabun, Masaaki Nakahara, Kazuyasu Nakao, Misa Nakamura, Ichiro Mori, Kennichi Kakudo

ABSTRACT

Metastasis to the regional lymph nodes through the lymphatic vessels is a common step in the progression of cancer and an important prognostic factor in many types of cancer. Recent evidence suggests that VEGF-C promotes lymphangiogenesis, and that tumor lymphangiogenesis in turn promotes lymphatic metastasis. We have studied the role of LVD in breast cancer, and examined whether LVD is associated with lymph node metastasis, VEGF-C expression, or prognosis. In addition, we examined whether VEGF-C mRNA transcript levels were associated with lymph node metastasis and LVD. We began by investigating the lymphatics in primary human breast carcinoma with long-term follow-up (113 cases of invasive ductal and other breast cancers) by quantitative immunohistochemical staining for podoplanin. We then analyzed the relationship between LVD and lymph node status as well as VEGF-C immunoreactivity and other established clinicopathological parameters. The relationship between LVD and prognosis was also studied. VEGF-C mRNA transcript levels were examined by quantitative real-time RT-PCR, in 55 invasive ductal breast carcinomas. This was followed by an analysis of the relationship between VEGF-C mRNA transcript levels and lymph node metastasis as well as LVD. Mean LVD of 'hot spots' was 10.2 +/- 7.4/each case. LVD was significantly correlated with lymph node metastasis (p < 0.0001), VEGF-C immunoreactivity (p = 0.0084), and podoplanin positive lymphatic invasion (p < 0.0001). Survival curves determined by the Kaplan-Meier method and univariate analysis demonstrated that high LVD was associated with both worse disease free survival (p = 0.0033) and overall survival (p = 0.0391). VEGF-C mRNA transcript levels were also correlated with lymph node metastasis (p = 0.0074) and LVD (p = 0.0409). Increased LVD was correlated with lymph node metastasis and VEGF-C expression. High LVD may be a significant unfavorable prognostic factor for long-term survival in breast cancer. More... »

PAGES

125-132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10549-004-5783-x

DOI

http://dx.doi.org/10.1007/s10549-004-5783-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046940765

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15868440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vascular Endothelial Growth Factor C", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Second Department of Pathology, Wakayama Medical University, 811-1, Kimiidera, 641-8509, Wakayama City, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Yasushi", 
        "id": "sg:person.01010753753.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010753753.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Second Department of Pathology, Wakayama Medical University, 811-1, Kimiidera, 641-8509, Wakayama City, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasuoka", 
        "givenName": "Hironao", 
        "id": "sg:person.01134251263.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134251263.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Police Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416980.2", 
          "name": [
            "Department of Pathology, Osaka Police Hospital, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujimoto", 
        "givenName": "Masahiko", 
        "id": "sg:person.01024171433.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024171433.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Police Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416980.2", 
          "name": [
            "Department of Surgery, Osaka Police Hospital, Osaka City, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imabun", 
        "givenName": "Shigeru", 
        "id": "sg:person.01311201323.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311201323.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Police Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416980.2", 
          "name": [
            "Department of Surgery, Osaka Police Hospital, Osaka City, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakahara", 
        "givenName": "Masaaki", 
        "id": "sg:person.01301056241.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301056241.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka Police Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416980.2", 
          "name": [
            "Department of Surgery, Osaka Police Hospital, Osaka City, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakao", 
        "givenName": "Kazuyasu", 
        "id": "sg:person.014135025312.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135025312.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Second Department of Pathology, Wakayama Medical University, 811-1, Kimiidera, 641-8509, Wakayama City, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Misa", 
        "id": "sg:person.01200066010.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200066010.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Second Department of Pathology, Wakayama Medical University, 811-1, Kimiidera, 641-8509, Wakayama City, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Ichiro", 
        "id": "sg:person.01150630772.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150630772.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wakayama Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412857.d", 
          "name": [
            "Second Department of Pathology, Wakayama Medical University, 811-1, Kimiidera, 641-8509, Wakayama City, Wakayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kakudo", 
        "givenName": "Kennichi", 
        "id": "sg:person.0716672405.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716672405.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/path.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004095520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/20.4.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010041340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)65392-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012067265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/84635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014520430", 
          "https://doi.org/10.1038/84635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-7207(99)00003-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015122911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016199935", 
          "https://doi.org/10.1038/ni1013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016199935", 
          "https://doi.org/10.1038/ni1013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6.10.986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018725591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199101033240101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018913678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)65285-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026137622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030639721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1957.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033483945", 
          "https://doi.org/10.1038/bjc.1957.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1957.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033483945", 
          "https://doi.org/10.1038/bjc.1957.43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.24.14389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035264605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fj.99-1049com", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038353954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.8.3566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040735545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/84643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042745082", 
          "https://doi.org/10.1038/84643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19991201)86:11<2406::aid-cncr31>3.0.co;2-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042987611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/01.mp.0000062858.98295.9f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046737958", 
          "https://doi.org/10.1097/01.mp.0000062858.98295.9f"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0215(20010120)95:1<29::aid-ijc1005>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047836202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.10283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052697807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074514647", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074722406", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074767506", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074792727", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074797846", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074958918", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076596053", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076612724", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083158135", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-05", 
    "datePublishedReg": "2005-05-01", 
    "description": "Metastasis to the regional lymph nodes through the lymphatic vessels is a common step in the progression of cancer and an important prognostic factor in many types of cancer. Recent evidence suggests that VEGF-C promotes lymphangiogenesis, and that tumor lymphangiogenesis in turn promotes lymphatic metastasis. We have studied the role of LVD in breast cancer, and examined whether LVD is associated with lymph node metastasis, VEGF-C expression, or prognosis. In addition, we examined whether VEGF-C mRNA transcript levels were associated with lymph node metastasis and LVD. We began by investigating the lymphatics in primary human breast carcinoma with long-term follow-up (113 cases of invasive ductal and other breast cancers) by quantitative immunohistochemical staining for podoplanin. We then analyzed the relationship between LVD and lymph node status as well as VEGF-C immunoreactivity and other established clinicopathological parameters. The relationship between LVD and prognosis was also studied. VEGF-C mRNA transcript levels were examined by quantitative real-time RT-PCR, in 55 invasive ductal breast carcinomas. This was followed by an analysis of the relationship between VEGF-C mRNA transcript levels and lymph node metastasis as well as LVD. Mean LVD of 'hot spots' was 10.2 +/- 7.4/each case. LVD was significantly correlated with lymph node metastasis (p < 0.0001), VEGF-C immunoreactivity (p = 0.0084), and podoplanin positive lymphatic invasion (p < 0.0001). Survival curves determined by the Kaplan-Meier method and univariate analysis demonstrated that high LVD was associated with both worse disease free survival (p = 0.0033) and overall survival (p = 0.0391). VEGF-C mRNA transcript levels were also correlated with lymph node metastasis (p = 0.0074) and LVD (p = 0.0409). Increased LVD was correlated with lymph node metastasis and VEGF-C expression. High LVD may be a significant unfavorable prognostic factor for long-term survival in breast cancer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10549-004-5783-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1092777", 
        "issn": [
          "0167-6806", 
          "1573-7217"
        ], 
        "name": "Breast Cancer Research and Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer", 
    "pagination": "125-132", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df9bea3ec42a4e3214a7624e3fc8df14d341beceacc10e127180d1ff1d907869"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15868440"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8111104"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10549-004-5783-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046940765"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10549-004-5783-x", 
      "https://app.dimensions.ai/details/publication/pub.1046940765"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10549-004-5783-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10549-004-5783-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10549-004-5783-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10549-004-5783-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10549-004-5783-x'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      75 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10549-004-5783-x schema:about N07660f332a4249dfa91331065f8d9901
2 N23075348e5564679a27596fbfcd2e49b
3 N2760115c03e244b5a1829dbf32ae8b42
4 N29e854f558d045ec82cd5fd48661714a
5 N31a2c0dd60084e03aa6d9d404ad4115f
6 N31d6dd44c51e4a11840c2c9f587505fc
7 N63a5d85a7bad4e50aa1509df3539d9cc
8 N7003cf4ed4934daaafc423b4d08de652
9 N785abb05f5a04aa1be6eee1a6b21c2f6
10 N84ee9d9f3bde4cfb9f53dd5e794768ce
11 Nae4cde4a44ca4304b97123e013b93b8d
12 Naf76418eac5e439fb41caebb73e2aca4
13 Ncc5f3a4c3237470c8a649d4e30c2fbf6
14 Nce8ea11932224a70bbeade0097e44843
15 Ne07d3d4d4989491e9fbbaa2e060d1c6a
16 Ned4e15eef99949409491174f89b4b100
17 Nf9f30267ef8347999d2e657a11d1fe73
18 Nfa0b804494694abaa95489bae08a2691
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N1cf77c716e0d4cf7ad533b93386b647a
22 schema:citation sg:pub.10.1038/84635
23 sg:pub.10.1038/84643
24 sg:pub.10.1038/bjc.1957.43
25 sg:pub.10.1038/ni1013
26 sg:pub.10.1097/01.mp.0000062858.98295.9f
27 https://app.dimensions.ai/details/publication/pub.1074514647
28 https://app.dimensions.ai/details/publication/pub.1074722406
29 https://app.dimensions.ai/details/publication/pub.1074767506
30 https://app.dimensions.ai/details/publication/pub.1074792727
31 https://app.dimensions.ai/details/publication/pub.1074797846
32 https://app.dimensions.ai/details/publication/pub.1074958918
33 https://app.dimensions.ai/details/publication/pub.1076596053
34 https://app.dimensions.ai/details/publication/pub.1076612724
35 https://app.dimensions.ai/details/publication/pub.1083158135
36 https://doi.org/10.1002/(sici)1097-0142(19991201)86:11<2406::aid-cncr31>3.0.co;2-e
37 https://doi.org/10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3
38 https://doi.org/10.1002/1097-0215(20010120)95:1<29::aid-ijc1005>3.0.co;2-w
39 https://doi.org/10.1002/ijc.10283
40 https://doi.org/10.1002/path.969
41 https://doi.org/10.1016/s0002-9440(10)65285-6
42 https://doi.org/10.1016/s0002-9440(10)65392-8
43 https://doi.org/10.1016/s0303-7207(99)00003-9
44 https://doi.org/10.1056/nejm199101033240101
45 https://doi.org/10.1073/pnas.92.8.3566
46 https://doi.org/10.1073/pnas.95.24.14389
47 https://doi.org/10.1093/emboj/20.4.672
48 https://doi.org/10.1096/fj.99-1049com
49 https://doi.org/10.1101/gr.6.10.986
50 schema:datePublished 2005-05
51 schema:datePublishedReg 2005-05-01
52 schema:description Metastasis to the regional lymph nodes through the lymphatic vessels is a common step in the progression of cancer and an important prognostic factor in many types of cancer. Recent evidence suggests that VEGF-C promotes lymphangiogenesis, and that tumor lymphangiogenesis in turn promotes lymphatic metastasis. We have studied the role of LVD in breast cancer, and examined whether LVD is associated with lymph node metastasis, VEGF-C expression, or prognosis. In addition, we examined whether VEGF-C mRNA transcript levels were associated with lymph node metastasis and LVD. We began by investigating the lymphatics in primary human breast carcinoma with long-term follow-up (113 cases of invasive ductal and other breast cancers) by quantitative immunohistochemical staining for podoplanin. We then analyzed the relationship between LVD and lymph node status as well as VEGF-C immunoreactivity and other established clinicopathological parameters. The relationship between LVD and prognosis was also studied. VEGF-C mRNA transcript levels were examined by quantitative real-time RT-PCR, in 55 invasive ductal breast carcinomas. This was followed by an analysis of the relationship between VEGF-C mRNA transcript levels and lymph node metastasis as well as LVD. Mean LVD of 'hot spots' was 10.2 +/- 7.4/each case. LVD was significantly correlated with lymph node metastasis (p < 0.0001), VEGF-C immunoreactivity (p = 0.0084), and podoplanin positive lymphatic invasion (p < 0.0001). Survival curves determined by the Kaplan-Meier method and univariate analysis demonstrated that high LVD was associated with both worse disease free survival (p = 0.0033) and overall survival (p = 0.0391). VEGF-C mRNA transcript levels were also correlated with lymph node metastasis (p = 0.0074) and LVD (p = 0.0409). Increased LVD was correlated with lymph node metastasis and VEGF-C expression. High LVD may be a significant unfavorable prognostic factor for long-term survival in breast cancer.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N2a09b76c37244d0388f01b729a58f7f3
57 Na3abe6b7d6d24238a821c2c5fe0f100c
58 sg:journal.1092777
59 schema:name Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer
60 schema:pagination 125-132
61 schema:productId N34e0dc40d2c94991b576c0a4d4f2e5f5
62 N45ead40f397840f08d025fb75c9e8a2f
63 N45ec4e4a84d24d0f8e571057c5645760
64 N92f68beeeb9f48498f79ccb3a083d451
65 Nba51af3d250741a6b48fc39e6a57adc2
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046940765
67 https://doi.org/10.1007/s10549-004-5783-x
68 schema:sdDatePublished 2019-04-11T14:26
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N35c6a366fc0b4963a39931d8a21882d1
71 schema:url http://link.springer.com/10.1007/s10549-004-5783-x
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N07660f332a4249dfa91331065f8d9901 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Proportional Hazards Models
77 rdf:type schema:DefinedTerm
78 N1cf77c716e0d4cf7ad533b93386b647a rdf:first sg:person.01010753753.31
79 rdf:rest Ne59623980d3644e5903083b1a8d088d5
80 N23075348e5564679a27596fbfcd2e49b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name RNA, Messenger
82 rdf:type schema:DefinedTerm
83 N2760115c03e244b5a1829dbf32ae8b42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Prognosis
85 rdf:type schema:DefinedTerm
86 N29e854f558d045ec82cd5fd48661714a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Aged, 80 and over
88 rdf:type schema:DefinedTerm
89 N2a09b76c37244d0388f01b729a58f7f3 schema:issueNumber 2
90 rdf:type schema:PublicationIssue
91 N31a2c0dd60084e03aa6d9d404ad4115f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Lymph Nodes
93 rdf:type schema:DefinedTerm
94 N31d6dd44c51e4a11840c2c9f587505fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Adult
96 rdf:type schema:DefinedTerm
97 N34e0dc40d2c94991b576c0a4d4f2e5f5 schema:name readcube_id
98 schema:value df9bea3ec42a4e3214a7624e3fc8df14d341beceacc10e127180d1ff1d907869
99 rdf:type schema:PropertyValue
100 N35c6a366fc0b4963a39931d8a21882d1 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N45ead40f397840f08d025fb75c9e8a2f schema:name pubmed_id
103 schema:value 15868440
104 rdf:type schema:PropertyValue
105 N45ec4e4a84d24d0f8e571057c5645760 schema:name doi
106 schema:value 10.1007/s10549-004-5783-x
107 rdf:type schema:PropertyValue
108 N5a386ce93f824b17b33099e27bb0af71 rdf:first sg:person.014135025312.31
109 rdf:rest Ne7c2a9aca8db4864b1475907fea74e10
110 N5bace492b758493baf363ddaf8e3b25e rdf:first sg:person.01311201323.05
111 rdf:rest N9b9463d510e743df9aaf5f3830dc4fd4
112 N63905ef9ab6944edb663a2d2551f69bb rdf:first sg:person.01024171433.62
113 rdf:rest N5bace492b758493baf363ddaf8e3b25e
114 N63a5d85a7bad4e50aa1509df3539d9cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Disease-Free Survival
116 rdf:type schema:DefinedTerm
117 N7003cf4ed4934daaafc423b4d08de652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N785abb05f5a04aa1be6eee1a6b21c2f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Biomarkers, Tumor
122 rdf:type schema:DefinedTerm
123 N84ee9d9f3bde4cfb9f53dd5e794768ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Middle Aged
125 rdf:type schema:DefinedTerm
126 N92f68beeeb9f48498f79ccb3a083d451 schema:name dimensions_id
127 schema:value pub.1046940765
128 rdf:type schema:PropertyValue
129 N9b9463d510e743df9aaf5f3830dc4fd4 rdf:first sg:person.01301056241.32
130 rdf:rest N5a386ce93f824b17b33099e27bb0af71
131 Na3abe6b7d6d24238a821c2c5fe0f100c schema:volumeNumber 91
132 rdf:type schema:PublicationVolume
133 Nae4cde4a44ca4304b97123e013b93b8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Vascular Endothelial Growth Factor C
135 rdf:type schema:DefinedTerm
136 Naf76418eac5e439fb41caebb73e2aca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 Nba51af3d250741a6b48fc39e6a57adc2 schema:name nlm_unique_id
140 schema:value 8111104
141 rdf:type schema:PropertyValue
142 Ncc5f3a4c3237470c8a649d4e30c2fbf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Survival Rate
144 rdf:type schema:DefinedTerm
145 Nce8ea11932224a70bbeade0097e44843 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Multivariate Analysis
147 rdf:type schema:DefinedTerm
148 Ndbb86f531f6f48cf9d019d1e2171127b rdf:first sg:person.0716672405.19
149 rdf:rest rdf:nil
150 Ne07d3d4d4989491e9fbbaa2e060d1c6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Lymphatic Metastasis
152 rdf:type schema:DefinedTerm
153 Ne59623980d3644e5903083b1a8d088d5 rdf:first sg:person.01134251263.42
154 rdf:rest N63905ef9ab6944edb663a2d2551f69bb
155 Ne7c2a9aca8db4864b1475907fea74e10 rdf:first sg:person.01200066010.32
156 rdf:rest Nf12c4163e9324e92a7cdf31795de4a06
157 Ned4e15eef99949409491174f89b4b100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Breast Neoplasms
159 rdf:type schema:DefinedTerm
160 Nf12c4163e9324e92a7cdf31795de4a06 rdf:first sg:person.01150630772.54
161 rdf:rest Ndbb86f531f6f48cf9d019d1e2171127b
162 Nf9f30267ef8347999d2e657a11d1fe73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Japan
164 rdf:type schema:DefinedTerm
165 Nfa0b804494694abaa95489bae08a2691 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Aged
167 rdf:type schema:DefinedTerm
168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
169 schema:name Medical and Health Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
172 schema:name Oncology and Carcinogenesis
173 rdf:type schema:DefinedTerm
174 sg:journal.1092777 schema:issn 0167-6806
175 1573-7217
176 schema:name Breast Cancer Research and Treatment
177 rdf:type schema:Periodical
178 sg:person.01010753753.31 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
179 schema:familyName Nakamura
180 schema:givenName Yasushi
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010753753.31
182 rdf:type schema:Person
183 sg:person.01024171433.62 schema:affiliation https://www.grid.ac/institutes/grid.416980.2
184 schema:familyName Tsujimoto
185 schema:givenName Masahiko
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024171433.62
187 rdf:type schema:Person
188 sg:person.01134251263.42 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
189 schema:familyName Yasuoka
190 schema:givenName Hironao
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134251263.42
192 rdf:type schema:Person
193 sg:person.01150630772.54 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
194 schema:familyName Mori
195 schema:givenName Ichiro
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150630772.54
197 rdf:type schema:Person
198 sg:person.01200066010.32 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
199 schema:familyName Nakamura
200 schema:givenName Misa
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200066010.32
202 rdf:type schema:Person
203 sg:person.01301056241.32 schema:affiliation https://www.grid.ac/institutes/grid.416980.2
204 schema:familyName Nakahara
205 schema:givenName Masaaki
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301056241.32
207 rdf:type schema:Person
208 sg:person.01311201323.05 schema:affiliation https://www.grid.ac/institutes/grid.416980.2
209 schema:familyName Imabun
210 schema:givenName Shigeru
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311201323.05
212 rdf:type schema:Person
213 sg:person.014135025312.31 schema:affiliation https://www.grid.ac/institutes/grid.416980.2
214 schema:familyName Nakao
215 schema:givenName Kazuyasu
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014135025312.31
217 rdf:type schema:Person
218 sg:person.0716672405.19 schema:affiliation https://www.grid.ac/institutes/grid.412857.d
219 schema:familyName Kakudo
220 schema:givenName Kennichi
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716672405.19
222 rdf:type schema:Person
223 sg:pub.10.1038/84635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014520430
224 https://doi.org/10.1038/84635
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/84643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042745082
227 https://doi.org/10.1038/84643
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/bjc.1957.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033483945
230 https://doi.org/10.1038/bjc.1957.43
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/ni1013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016199935
233 https://doi.org/10.1038/ni1013
234 rdf:type schema:CreativeWork
235 sg:pub.10.1097/01.mp.0000062858.98295.9f schema:sameAs https://app.dimensions.ai/details/publication/pub.1046737958
236 https://doi.org/10.1097/01.mp.0000062858.98295.9f
237 rdf:type schema:CreativeWork
238 https://app.dimensions.ai/details/publication/pub.1074514647 schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1074722406 schema:CreativeWork
240 https://app.dimensions.ai/details/publication/pub.1074767506 schema:CreativeWork
241 https://app.dimensions.ai/details/publication/pub.1074792727 schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1074797846 schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1074958918 schema:CreativeWork
244 https://app.dimensions.ai/details/publication/pub.1076596053 schema:CreativeWork
245 https://app.dimensions.ai/details/publication/pub.1076612724 schema:CreativeWork
246 https://app.dimensions.ai/details/publication/pub.1083158135 schema:CreativeWork
247 https://doi.org/10.1002/(sici)1097-0142(19991201)86:11<2406::aid-cncr31>3.0.co;2-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1042987611
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1002/1097-0142(19831101)52:9<1551::aid-cncr2820520902>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639721
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1002/1097-0215(20010120)95:1<29::aid-ijc1005>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1047836202
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1002/ijc.10283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052697807
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1002/path.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004095520
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/s0002-9440(10)65285-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026137622
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s0002-9440(10)65392-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012067265
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0303-7207(99)00003-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015122911
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1056/nejm199101033240101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018913678
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1073/pnas.92.8.3566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735545
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1073/pnas.95.24.14389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035264605
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1093/emboj/20.4.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010041340
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1096/fj.99-1049com schema:sameAs https://app.dimensions.ai/details/publication/pub.1038353954
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1101/gr.6.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018725591
274 rdf:type schema:CreativeWork
275 https://www.grid.ac/institutes/grid.412857.d schema:alternateName Wakayama Medical University
276 schema:name Second Department of Pathology, Wakayama Medical University, 811-1, Kimiidera, 641-8509, Wakayama City, Wakayama, Japan
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.416980.2 schema:alternateName Osaka Police Hospital
279 schema:name Department of Pathology, Osaka Police Hospital, Japan
280 Department of Surgery, Osaka Police Hospital, Osaka City, Osaka, Japan
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...