Estimating EEG Source Dipole Orientation Based on Singular-value Decomposition for Connectivity Analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-03

AUTHORS

M. Rubega, M. Carboni, M. Seeber, D. Pascucci, S. Tourbier, G. Toscano, P. Van Mierlo, P. Hagmann, G. Plomp, S. Vulliemoz, C. M. Michel

ABSTRACT

In the last decade, the use of high-density electrode arrays for EEG recordings combined with the improvements of source reconstruction algorithms has allowed the investigation of brain networks dynamics at a sub-second scale. One powerful tool for investigating large-scale functional brain networks with EEG is time-varying effective connectivity applied to source signals obtained from electric source imaging. Due to computational and interpretation limitations, the brain is usually parcelled into a limited number of regions of interests (ROIs) before computing EEG connectivity. One specific need and still open problem is how to represent the time- and frequency-content carried by hundreds of dipoles with diverging orientation in each ROI with one unique representative time-series. The main aim of this paper is to provide a method to compute a signal that explains most of the variability of the data contained in each ROI before computing, for instance, time-varying connectivity. As the representative time-series for a ROI, we propose to use the first singular vector computed by a singular-value decomposition of all dipoles belonging to the same ROI. We applied this method to two real datasets (visual evoked potentials and epileptic spikes) and evaluated the time-course and the frequency content of the obtained signals. For each ROI, both the time-course and the frequency content of the proposed method reflected the expected time-course and the scalp-EEG frequency content, representing most of the variability of the sources (~ 80%) and improving connectivity results in comparison to other procedures used so far. We also confirm these results in a simulated dataset with a known ground truth. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10548-018-0691-2

DOI

http://dx.doi.org/10.1007/s10548-018-0691-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110344496

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30511174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubega", 
        "givenName": "M.", 
        "id": "sg:person.07405742476.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405742476.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland", 
            "EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carboni", 
        "givenName": "M.", 
        "id": "sg:person.016105152576.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105152576.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.8591.5", 
          "name": [
            "Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeber", 
        "givenName": "M.", 
        "id": "sg:person.01323525674.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323525674.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fribourg", 
          "id": "https://www.grid.ac/institutes/grid.8534.a", 
          "name": [
            "Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pascucci", 
        "givenName": "D.", 
        "id": "sg:person.01036346125.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036346125.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.8515.9", 
          "name": [
            "Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tourbier", 
        "givenName": "S.", 
        "id": "sg:person.01073517352.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073517352.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland", 
            "Unit of Sleep Medicine and Epilepsy, C. Mondino National Neurological Institute, Pavia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toscano", 
        "givenName": "G.", 
        "id": "sg:person.010450615275.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450615275.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland", 
            "Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Mierlo", 
        "givenName": "P.", 
        "id": "sg:person.01316213650.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316213650.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.8515.9", 
          "name": [
            "Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hagmann", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Fribourg", 
          "id": "https://www.grid.ac/institutes/grid.8534.a", 
          "name": [
            "Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plomp", 
        "givenName": "G.", 
        "id": "sg:person.0746017620.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746017620.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Geneva", 
          "id": "https://www.grid.ac/institutes/grid.150338.c", 
          "name": [
            "EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulliemoz", 
        "givenName": "S.", 
        "id": "sg:person.01244633047.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244633047.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre d'Imagerie BioMedicale", 
          "id": "https://www.grid.ac/institutes/grid.433220.4", 
          "name": [
            "Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland", 
            "Lemanic Biomedical Imaging Centre (CIBM), Lausanne, Geneva, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michel", 
        "givenName": "C. M.", 
        "id": "sg:person.01146036253.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146036253.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000604320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2003.09.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000820168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000946231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0114606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002125583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002936618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2015.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003776823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004388241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005740676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005818793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-54474-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006960071", 
          "https://doi.org/10.1007/978-3-642-54474-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2001.0978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008623590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009138592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.01867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010318713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2016.00121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011160458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awr243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011893125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012372611", 
          "https://doi.org/10.1038/nn1224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012372611", 
          "https://doi.org/10.1038/nn1224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/71152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013540042", 
          "https://doi.org/10.1038/71152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/71152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013540042", 
          "https://doi.org/10.1038/71152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-5-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017641053", 
          "https://doi.org/10.1186/1743-0003-5-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fneur.2013.00039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019391642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp-2013-305515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021156519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026607118642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023036231", 
          "https://doi.org/10.1023/a:1026607118642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2005.12.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023983953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2007.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024311132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026495662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027425858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027844693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-016-0517-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204386", 
          "https://doi.org/10.1007/s10548-016-0517-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-016-0517-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028204386", 
          "https://doi.org/10.1007/s10548-016-0517-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028384765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-010-0410-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028879290", 
          "https://doi.org/10.1007/s00422-010-0410-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-010-0410-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028879290", 
          "https://doi.org/10.1007/s00422-010-0410-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-016-0538-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028947841", 
          "https://doi.org/10.1007/s10548-016-0538-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-016-0538-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028947841", 
          "https://doi.org/10.1007/s10548-016-0538-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2011.00138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029454440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1694-0_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029485416", 
          "https://doi.org/10.1007/978-1-4612-1694-0_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1694-0_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029485416", 
          "https://doi.org/10.1007/978-1-4612-1694-0_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn.1996.8.6.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029545631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030593054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(00)01482-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031300494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0048121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031717559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2011/813870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032436125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhg111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032469247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32835ee5b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032805214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32835ee5b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032805214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wco.0b013e32835ee5b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032805214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033689153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00229863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034613665", 
          "https://doi.org/10.1007/bf00229863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00229863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034613665", 
          "https://doi.org/10.1007/bf00229863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0193(200010)11:2<77::aid-hbm20>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035535644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/12.10.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035843035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037185167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bht004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037593657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037642379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fninf.2015.00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037872651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhg087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038776319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.04.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038916880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0926-6410(02)00142-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039632219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/epi.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039822372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040148010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)80690-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040593357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0027863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041947066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2007.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042682086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043981493", 
          "https://doi.org/10.1038/ncomms6672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b16550-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044464187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-410513-3.00011-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046692038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp-2011-301944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047073152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2009.06.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048135922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1112685108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049823120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2011.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052001959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2004.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052167216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2016.00143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052482236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.20047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053549258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.8677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061085762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2013.2297439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061424048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2016.2619665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1034115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0181105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090842474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00113.2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091248442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2017.08.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091430214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.31670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101236685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.31670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101236685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.31670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101236685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2193-17.2018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101636981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1684/epd.2018.0957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103278920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1684/epd.2018.0957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103278920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-018-0646-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103657556", 
          "https://doi.org/10.1007/s10548-018-0646-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-018-0646-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103657556", 
          "https://doi.org/10.1007/s10548-018-0646-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-03", 
    "datePublishedReg": "2018-12-03", 
    "description": "In the last decade, the use of high-density electrode arrays for EEG recordings combined with the improvements of source reconstruction algorithms has allowed the investigation of brain networks dynamics at a sub-second scale. One powerful tool for investigating large-scale functional brain networks with EEG is time-varying effective connectivity applied to source signals obtained from electric source imaging. Due to computational and interpretation limitations, the brain is usually parcelled into a limited number of regions of interests (ROIs) before computing EEG connectivity. One specific need and still open problem is how to represent the time- and frequency-content carried by hundreds of dipoles with diverging orientation in each ROI with one unique representative time-series. The main aim of this paper is to provide a method to compute a signal that explains most of the variability of the data contained in each ROI before computing, for instance, time-varying connectivity. As the representative time-series for a ROI, we propose to use the first singular vector computed by a singular-value decomposition of all dipoles belonging to the same ROI. We applied this method to two real datasets (visual evoked potentials and epileptic spikes) and evaluated the time-course and the frequency content of the obtained signals. For each ROI, both the time-course and the frequency content of the proposed method reflected the expected time-course and the scalp-EEG frequency content, representing most of the variability of the sources (~\u200980%) and improving connectivity results in comparison to other procedures used so far. We also confirm these results in a simulated dataset with a known ground truth.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10548-018-0691-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6661910", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6662580", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5232727", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3940123", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1098975", 
        "issn": [
          "0896-0267", 
          "1573-6792"
        ], 
        "name": "Brain Topography", 
        "type": "Periodical"
      }
    ], 
    "name": "Estimating EEG Source Dipole Orientation Based on Singular-value Decomposition for Connectivity Analysis", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed316d56f34deed880c8eab77b592ea9a656bf7f9162aebb5fd42b4c4deba1b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30511174"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8903034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10548-018-0691-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110344496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10548-018-0691-2", 
      "https://app.dimensions.ai/details/publication/pub.1110344496"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000281_0000000281/records_9823_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10548-018-0691-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10548-018-0691-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10548-018-0691-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10548-018-0691-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10548-018-0691-2'


 

This table displays all metadata directly associated to this object as RDF triples.

411 TRIPLES      21 PREDICATES      106 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10548-018-0691-2 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N3f8c36ebef6645e6b41d72aa5caf6c2b
4 schema:citation sg:pub.10.1007/978-1-4612-1694-0_15
5 sg:pub.10.1007/978-3-642-54474-3_1
6 sg:pub.10.1007/bf00229863
7 sg:pub.10.1007/s00422-010-0410-x
8 sg:pub.10.1007/s10548-016-0517-z
9 sg:pub.10.1007/s10548-016-0538-7
10 sg:pub.10.1007/s10548-018-0646-7
11 sg:pub.10.1023/a:1026607118642
12 sg:pub.10.1038/71152
13 sg:pub.10.1038/ncomms6672
14 sg:pub.10.1038/nn1224
15 sg:pub.10.1186/1743-0003-5-25
16 https://doi.org/10.1002/1097-0193(200010)11:2<77::aid-hbm20>3.0.co;2-0
17 https://doi.org/10.1002/hbm.20047
18 https://doi.org/10.1002/hbm.20263
19 https://doi.org/10.1002/hbm.20346
20 https://doi.org/10.1006/nimg.2001.0978
21 https://doi.org/10.1006/nimg.2002.1143
22 https://doi.org/10.1016/b978-0-12-410513-3.00011-5
23 https://doi.org/10.1016/j.brainres.2007.12.037
24 https://doi.org/10.1016/j.brainres.2009.06.096
25 https://doi.org/10.1016/j.clinph.2004.04.029
26 https://doi.org/10.1016/j.clinph.2004.06.001
27 https://doi.org/10.1016/j.jneumeth.2015.03.018
28 https://doi.org/10.1016/j.laa.2007.12.026
29 https://doi.org/10.1016/j.neuroimage.2003.09.051
30 https://doi.org/10.1016/j.neuroimage.2004.09.036
31 https://doi.org/10.1016/j.neuroimage.2005.12.055
32 https://doi.org/10.1016/j.neuroimage.2006.01.021
33 https://doi.org/10.1016/j.neuroimage.2007.06.034
34 https://doi.org/10.1016/j.neuroimage.2007.10.011
35 https://doi.org/10.1016/j.neuroimage.2009.10.003
36 https://doi.org/10.1016/j.neuroimage.2009.12.110
37 https://doi.org/10.1016/j.neuroimage.2010.06.010
38 https://doi.org/10.1016/j.neuroimage.2011.12.039
39 https://doi.org/10.1016/j.neuroimage.2012.01.024
40 https://doi.org/10.1016/j.neuroimage.2012.09.036
41 https://doi.org/10.1016/j.neuroimage.2013.03.053
42 https://doi.org/10.1016/j.neuroimage.2013.04.046
43 https://doi.org/10.1016/j.neuroimage.2014.03.025
44 https://doi.org/10.1016/j.neuroimage.2015.11.047
45 https://doi.org/10.1016/j.neuroimage.2017.08.074
46 https://doi.org/10.1016/j.neuropsychologia.2011.05.003
47 https://doi.org/10.1016/j.visres.2011.04.003
48 https://doi.org/10.1016/s0896-6273(00)80690-x
49 https://doi.org/10.1016/s0926-6410(02)00142-8
50 https://doi.org/10.1016/s1364-6613(00)01482-0
51 https://doi.org/10.1073/pnas.1112685108
52 https://doi.org/10.1093/brain/awr243
53 https://doi.org/10.1093/cercor/bhg087
54 https://doi.org/10.1093/cercor/bhg111
55 https://doi.org/10.1093/cercor/bht004
56 https://doi.org/10.1097/wco.0b013e32835ee5b8
57 https://doi.org/10.1109/10.8677
58 https://doi.org/10.1109/msp.2013.2297439
59 https://doi.org/10.1109/tbme.2016.2619665
60 https://doi.org/10.1111/epi.12904
61 https://doi.org/10.1136/jnnp-2011-301944
62 https://doi.org/10.1136/jnnp-2013-305515
63 https://doi.org/10.1137/0716029
64 https://doi.org/10.1137/1034115
65 https://doi.org/10.1152/jn.00113.2017
66 https://doi.org/10.1155/2011/813870
67 https://doi.org/10.1162/jocn.1996.8.6.551
68 https://doi.org/10.1167/12.10.18
69 https://doi.org/10.1201/b16550-6
70 https://doi.org/10.1371/journal.pone.0000684
71 https://doi.org/10.1371/journal.pone.0027863
72 https://doi.org/10.1371/journal.pone.0048121
73 https://doi.org/10.1371/journal.pone.0114606
74 https://doi.org/10.1371/journal.pone.0181105
75 https://doi.org/10.1523/jneurosci.2193-17.2018
76 https://doi.org/10.1684/epd.2018.0957
77 https://doi.org/10.3389/fncom.2016.00121
78 https://doi.org/10.3389/fneur.2013.00039
79 https://doi.org/10.3389/fnhum.2011.00138
80 https://doi.org/10.3389/fninf.2015.00016
81 https://doi.org/10.3389/fnins.2016.00143
82 https://doi.org/10.7554/elife.01867
83 https://doi.org/10.7554/elife.31670
84 schema:datePublished 2018-12-03
85 schema:datePublishedReg 2018-12-03
86 schema:description In the last decade, the use of high-density electrode arrays for EEG recordings combined with the improvements of source reconstruction algorithms has allowed the investigation of brain networks dynamics at a sub-second scale. One powerful tool for investigating large-scale functional brain networks with EEG is time-varying effective connectivity applied to source signals obtained from electric source imaging. Due to computational and interpretation limitations, the brain is usually parcelled into a limited number of regions of interests (ROIs) before computing EEG connectivity. One specific need and still open problem is how to represent the time- and frequency-content carried by hundreds of dipoles with diverging orientation in each ROI with one unique representative time-series. The main aim of this paper is to provide a method to compute a signal that explains most of the variability of the data contained in each ROI before computing, for instance, time-varying connectivity. As the representative time-series for a ROI, we propose to use the first singular vector computed by a singular-value decomposition of all dipoles belonging to the same ROI. We applied this method to two real datasets (visual evoked potentials and epileptic spikes) and evaluated the time-course and the frequency content of the obtained signals. For each ROI, both the time-course and the frequency content of the proposed method reflected the expected time-course and the scalp-EEG frequency content, representing most of the variability of the sources (~ 80%) and improving connectivity results in comparison to other procedures used so far. We also confirm these results in a simulated dataset with a known ground truth.
87 schema:genre research_article
88 schema:inLanguage en
89 schema:isAccessibleForFree false
90 schema:isPartOf sg:journal.1098975
91 schema:name Estimating EEG Source Dipole Orientation Based on Singular-value Decomposition for Connectivity Analysis
92 schema:pagination 1-16
93 schema:productId N26dd52978d834397a19205155c057e5c
94 N3965ed0fc3ac48f5a38335eaa482cbc7
95 N45b079451771413da9f87dbb2a506bf9
96 N72ed05fa1bde4d13b5987987e0e354ac
97 Naae2738f1a034995977e86130269968f
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110344496
99 https://doi.org/10.1007/s10548-018-0691-2
100 schema:sdDatePublished 2019-04-11T08:18
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N8594b0bf770e420487086aa961433d7b
103 schema:url https://link.springer.com/10.1007%2Fs10548-018-0691-2
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N03855933f46d476688a94ab4ba0ae860 rdf:first sg:person.01146036253.81
108 rdf:rest rdf:nil
109 N21486a75ac3741dc8ccc450abe671c6a rdf:first sg:person.01323525674.95
110 rdf:rest N5beb7c01ed254d95840b505c39c55e37
111 N26dd52978d834397a19205155c057e5c schema:name dimensions_id
112 schema:value pub.1110344496
113 rdf:type schema:PropertyValue
114 N305cf8f255fa4b3896790f6170eeb911 rdf:first sg:person.0746017620.30
115 rdf:rest N76492176d32a4e33967f81b8dd620ebb
116 N3965ed0fc3ac48f5a38335eaa482cbc7 schema:name nlm_unique_id
117 schema:value 8903034
118 rdf:type schema:PropertyValue
119 N3f8c36ebef6645e6b41d72aa5caf6c2b rdf:first sg:person.07405742476.51
120 rdf:rest Nbd2054fd00584b0cb80870c81b9dbe6c
121 N45b079451771413da9f87dbb2a506bf9 schema:name doi
122 schema:value 10.1007/s10548-018-0691-2
123 rdf:type schema:PropertyValue
124 N5beb7c01ed254d95840b505c39c55e37 rdf:first sg:person.01036346125.01
125 rdf:rest Nd6fb74378bd34e07ac655ff955e4ddfb
126 N72ed05fa1bde4d13b5987987e0e354ac schema:name pubmed_id
127 schema:value 30511174
128 rdf:type schema:PropertyValue
129 N76492176d32a4e33967f81b8dd620ebb rdf:first sg:person.01244633047.77
130 rdf:rest N03855933f46d476688a94ab4ba0ae860
131 N8594b0bf770e420487086aa961433d7b schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N8f64e6b39b0447d3b3d82eab2bedd6eb rdf:first sg:person.01316213650.28
134 rdf:rest Nfc83fbe6d4fd45d59e7ab4a5293940da
135 Naae2738f1a034995977e86130269968f schema:name readcube_id
136 schema:value ed316d56f34deed880c8eab77b592ea9a656bf7f9162aebb5fd42b4c4deba1b4
137 rdf:type schema:PropertyValue
138 Nbd2054fd00584b0cb80870c81b9dbe6c rdf:first sg:person.016105152576.02
139 rdf:rest N21486a75ac3741dc8ccc450abe671c6a
140 Nbd90aa4e2cbb4b93b806d8d80285de7e schema:affiliation https://www.grid.ac/institutes/grid.8515.9
141 schema:familyName Hagmann
142 schema:givenName P.
143 rdf:type schema:Person
144 Ncea55a5c77844959b78ec9159df81148 rdf:first sg:person.010450615275.19
145 rdf:rest N8f64e6b39b0447d3b3d82eab2bedd6eb
146 Nd6fb74378bd34e07ac655ff955e4ddfb rdf:first sg:person.01073517352.37
147 rdf:rest Ncea55a5c77844959b78ec9159df81148
148 Nfc83fbe6d4fd45d59e7ab4a5293940da rdf:first Nbd90aa4e2cbb4b93b806d8d80285de7e
149 rdf:rest N305cf8f255fa4b3896790f6170eeb911
150 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
151 schema:name Engineering
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
154 schema:name Electrical and Electronic Engineering
155 rdf:type schema:DefinedTerm
156 sg:grant.3940123 http://pending.schema.org/fundedItem sg:pub.10.1007/s10548-018-0691-2
157 rdf:type schema:MonetaryGrant
158 sg:grant.5232727 http://pending.schema.org/fundedItem sg:pub.10.1007/s10548-018-0691-2
159 rdf:type schema:MonetaryGrant
160 sg:grant.6661910 http://pending.schema.org/fundedItem sg:pub.10.1007/s10548-018-0691-2
161 rdf:type schema:MonetaryGrant
162 sg:grant.6662580 http://pending.schema.org/fundedItem sg:pub.10.1007/s10548-018-0691-2
163 rdf:type schema:MonetaryGrant
164 sg:journal.1098975 schema:issn 0896-0267
165 1573-6792
166 schema:name Brain Topography
167 rdf:type schema:Periodical
168 sg:person.01036346125.01 schema:affiliation https://www.grid.ac/institutes/grid.8534.a
169 schema:familyName Pascucci
170 schema:givenName D.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036346125.01
172 rdf:type schema:Person
173 sg:person.010450615275.19 schema:affiliation https://www.grid.ac/institutes/grid.150338.c
174 schema:familyName Toscano
175 schema:givenName G.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450615275.19
177 rdf:type schema:Person
178 sg:person.01073517352.37 schema:affiliation https://www.grid.ac/institutes/grid.8515.9
179 schema:familyName Tourbier
180 schema:givenName S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073517352.37
182 rdf:type schema:Person
183 sg:person.01146036253.81 schema:affiliation https://www.grid.ac/institutes/grid.433220.4
184 schema:familyName Michel
185 schema:givenName C. M.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146036253.81
187 rdf:type schema:Person
188 sg:person.01244633047.77 schema:affiliation https://www.grid.ac/institutes/grid.150338.c
189 schema:familyName Vulliemoz
190 schema:givenName S.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244633047.77
192 rdf:type schema:Person
193 sg:person.01316213650.28 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
194 schema:familyName Van Mierlo
195 schema:givenName P.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316213650.28
197 rdf:type schema:Person
198 sg:person.01323525674.95 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
199 schema:familyName Seeber
200 schema:givenName M.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323525674.95
202 rdf:type schema:Person
203 sg:person.016105152576.02 schema:affiliation https://www.grid.ac/institutes/grid.150338.c
204 schema:familyName Carboni
205 schema:givenName M.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105152576.02
207 rdf:type schema:Person
208 sg:person.07405742476.51 schema:affiliation https://www.grid.ac/institutes/grid.8591.5
209 schema:familyName Rubega
210 schema:givenName M.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405742476.51
212 rdf:type schema:Person
213 sg:person.0746017620.30 schema:affiliation https://www.grid.ac/institutes/grid.8534.a
214 schema:familyName Plomp
215 schema:givenName G.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746017620.30
217 rdf:type schema:Person
218 sg:pub.10.1007/978-1-4612-1694-0_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029485416
219 https://doi.org/10.1007/978-1-4612-1694-0_15
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/978-3-642-54474-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006960071
222 https://doi.org/10.1007/978-3-642-54474-3_1
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/bf00229863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034613665
225 https://doi.org/10.1007/bf00229863
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s00422-010-0410-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028879290
228 https://doi.org/10.1007/s00422-010-0410-x
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s10548-016-0517-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028204386
231 https://doi.org/10.1007/s10548-016-0517-z
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s10548-016-0538-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028947841
234 https://doi.org/10.1007/s10548-016-0538-7
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s10548-018-0646-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103657556
237 https://doi.org/10.1007/s10548-018-0646-7
238 rdf:type schema:CreativeWork
239 sg:pub.10.1023/a:1026607118642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023036231
240 https://doi.org/10.1023/a:1026607118642
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/71152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013540042
243 https://doi.org/10.1038/71152
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/ncomms6672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043981493
246 https://doi.org/10.1038/ncomms6672
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nn1224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012372611
249 https://doi.org/10.1038/nn1224
250 rdf:type schema:CreativeWork
251 sg:pub.10.1186/1743-0003-5-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017641053
252 https://doi.org/10.1186/1743-0003-5-25
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1002/1097-0193(200010)11:2<77::aid-hbm20>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035535644
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/hbm.20047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053549258
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/hbm.20263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028384765
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/hbm.20346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037185167
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1006/nimg.2001.0978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008623590
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1006/nimg.2002.1143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593054
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/b978-0-12-410513-3.00011-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046692038
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.brainres.2007.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042682086
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.brainres.2009.06.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048135922
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.clinph.2004.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009138592
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.clinph.2004.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052167216
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.jneumeth.2015.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003776823
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.laa.2007.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024311132
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.neuroimage.2003.09.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000820168
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.neuroimage.2004.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033689153
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.neuroimage.2005.12.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023983953
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.neuroimage.2006.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005818793
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.neuroimage.2007.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000946231
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/j.neuroimage.2007.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002936618
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/j.neuroimage.2009.12.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027844693
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.neuroimage.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005740676
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.neuroimage.2011.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037642379
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/j.neuroimage.2012.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000604320
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/j.neuroimage.2012.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027425858
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/j.neuroimage.2013.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004388241
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.neuroimage.2013.04.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038916880
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.neuroimage.2014.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026495662
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/j.neuroimage.2015.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618705
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1016/j.neuroimage.2017.08.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091430214
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1016/j.neuropsychologia.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040148010
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1016/j.visres.2011.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052001959
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1016/s0896-6273(00)80690-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040593357
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1016/s0926-6410(02)00142-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039632219
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1016/s1364-6613(00)01482-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031300494
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1073/pnas.1112685108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049823120
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1093/brain/awr243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011893125
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1093/cercor/bhg087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038776319
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1093/cercor/bhg111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032469247
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1093/cercor/bht004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037593657
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1097/wco.0b013e32835ee5b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032805214
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1109/10.8677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085762
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1109/msp.2013.2297439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061424048
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1109/tbme.2016.2619665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530322
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1111/epi.12904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039822372
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1136/jnnp-2011-301944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047073152
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1136/jnnp-2013-305515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021156519
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1137/0716029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852590
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1137/1034115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863417
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1152/jn.00113.2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091248442
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1155/2011/813870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032436125
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1162/jocn.1996.8.6.551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029545631
357 rdf:type schema:CreativeWork
358 https://doi.org/10.1167/12.10.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035843035
359 rdf:type schema:CreativeWork
360 https://doi.org/10.1201/b16550-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044464187
361 rdf:type schema:CreativeWork
362 https://doi.org/10.1371/journal.pone.0000684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029454440
363 rdf:type schema:CreativeWork
364 https://doi.org/10.1371/journal.pone.0027863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041947066
365 rdf:type schema:CreativeWork
366 https://doi.org/10.1371/journal.pone.0048121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031717559
367 rdf:type schema:CreativeWork
368 https://doi.org/10.1371/journal.pone.0114606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002125583
369 rdf:type schema:CreativeWork
370 https://doi.org/10.1371/journal.pone.0181105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090842474
371 rdf:type schema:CreativeWork
372 https://doi.org/10.1523/jneurosci.2193-17.2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101636981
373 rdf:type schema:CreativeWork
374 https://doi.org/10.1684/epd.2018.0957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103278920
375 rdf:type schema:CreativeWork
376 https://doi.org/10.3389/fncom.2016.00121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011160458
377 rdf:type schema:CreativeWork
378 https://doi.org/10.3389/fneur.2013.00039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019391642
379 rdf:type schema:CreativeWork
380 https://doi.org/10.3389/fnhum.2011.00138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065840
381 rdf:type schema:CreativeWork
382 https://doi.org/10.3389/fninf.2015.00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037872651
383 rdf:type schema:CreativeWork
384 https://doi.org/10.3389/fnins.2016.00143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052482236
385 rdf:type schema:CreativeWork
386 https://doi.org/10.7554/elife.01867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010318713
387 rdf:type schema:CreativeWork
388 https://doi.org/10.7554/elife.31670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101236685
389 rdf:type schema:CreativeWork
390 https://www.grid.ac/institutes/grid.150338.c schema:alternateName University Hospital of Geneva
391 schema:name EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
392 Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
393 Unit of Sleep Medicine and Epilepsy, C. Mondino National Neurological Institute, Pavia, Italy
394 rdf:type schema:Organization
395 https://www.grid.ac/institutes/grid.433220.4 schema:alternateName Centre d'Imagerie BioMedicale
396 schema:name Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
397 Lemanic Biomedical Imaging Centre (CIBM), Lausanne, Geneva, Switzerland
398 rdf:type schema:Organization
399 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
400 schema:name EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
401 Medical Image and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
402 rdf:type schema:Organization
403 https://www.grid.ac/institutes/grid.8515.9 schema:alternateName University Hospital of Lausanne
404 schema:name Department of Radiology, University Hospital of Lausanne, Lausanne, Switzerland
405 rdf:type schema:Organization
406 https://www.grid.ac/institutes/grid.8534.a schema:alternateName University of Fribourg
407 schema:name Perceptual Networks Group, Department of Psychology, University of Fribourg, Fribourg, Switzerland
408 rdf:type schema:Organization
409 https://www.grid.ac/institutes/grid.8591.5 schema:alternateName University of Geneva
410 schema:name Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
411 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...