Submeso Motions and Intermittent Turbulence Across a Nocturnal Low-Level Jet: A Self-Organized Criticality Analogy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Daniela Cava, Luca Mortarini, Umberto Giostra, Otavio Acevedo, Gabriel Katul

ABSTRACT

One of the hallmarks of the stable boundary layer is the switching between turbulent (active) and non-turbulent (passive) states. In very stable conditions, the boundary layer becomes layered with fully-developed turbulence confined to a shallow region near the surface. In the quiescent region above this near-surface layer, the turbulence is weak, intermittent and detached from the ground. These conditions promote the development of a low-level jet that re-energizes the turbulence through an elevated shear layer. The Monin–Obukhov similarity theory fails in the layered stable boundary layer thereby making the quantification of mixing and transport properties challenging for numerical models. In the present study, multi-level time series from a tall (140 m) meteorological tower are analyzed using the telegraphic approximation to investigate analogies with a general class of intermittency models that include self-organized criticality. The analogy between turbulence and self-organized criticality is restricted to clustering properties of sign changes of flow variables for describing switching between turbulent and non-turbulent states. The telegraphic approximation provides a new perspective on clustering and on external and internal intermittency for periods dominated by turbulent motions, a low-level jet and submeso motions. Some of these periods are characterized by the absence of turbulence but occasionally punctuated by bursts of intermittent turbulent events. The switching probability of active–inactive states and the lifetimes of inactive states (related to intermittent turbulent bursts) show evidence of self-organized-criticality like behaviour in terms of scaling laws. The coexistence of self-organized criticality and intermittent turbulence may offer new perspectives on the genesis of scaling laws and similarity arguments, thereby improving the performance of numerical models in the stable boundary layer. More... »

PAGES

1-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10546-019-00441-8

DOI

http://dx.doi.org/10.1007/s10546-019-00441-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113047436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Sciences and Climate", 
          "id": "https://www.grid.ac/institutes/grid.435667.5", 
          "name": [
            "Institute of Atmospheric Sciences and Climate - National Research Council, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cava", 
        "givenName": "Daniela", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Santa Maria", 
          "id": "https://www.grid.ac/institutes/grid.411239.c", 
          "name": [
            "Institute of Atmospheric Sciences and Climate - National Research Council, Torino, Italy", 
            "Universidade Federal de Santa Maria, Santa Maria, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mortarini", 
        "givenName": "Luca", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Urbino", 
          "id": "https://www.grid.ac/institutes/grid.12711.34", 
          "name": [
            "Department of Pure and Applied Sciences (DiSPeA), Universit\u00e0 degli Studi di Urbino \u201cCarlo Bo\u201d, Scientific Campus \u201cE. Mattei\u201d, 61029, Urbino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giostra", 
        "givenName": "Umberto", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Santa Maria", 
          "id": "https://www.grid.ac/institutes/grid.411239.c", 
          "name": [
            "Universidade Federal de Santa Maria, Santa Maria, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acevedo", 
        "givenName": "Otavio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Nicholas School of the Environment, Duke University, P.O. Box 80328, 27708, Durham, NC, USA", 
            "Department of Civil and Environmental Engineering, Duke University, 27708, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katul", 
        "givenName": "Gabriel", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.99.025001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000193196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.025001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000193196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-006-9112-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000478085", 
          "https://doi.org/10.1007/s10955-006-9112-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00709217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007831177", 
          "https://doi.org/10.1007/bf00709217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:boun.0000016502.52590.af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011568697", 
          "https://doi.org/10.1023/b:boun.0000016502.52590.af"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018909000098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013919791", 
          "https://doi.org/10.1023/a:1018909000098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd016167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016615909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-008-9342-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016898129", 
          "https://doi.org/10.1007/s10546-008-9342-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-008-9342-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016898129", 
          "https://doi.org/10.1007/s10546-008-9342-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jas-d-14-0311.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017234150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014917120110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021527671", 
          "https://doi.org/10.1023/a:1014917120110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014917120110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021527671", 
          "https://doi.org/10.1023/a:1014917120110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023115063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001620050093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023449568", 
          "https://doi.org/10.1007/s001620050093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001620050093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023449568", 
          "https://doi.org/10.1007/s001620050093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jas4002.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027454133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.056314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030262466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.056314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030262466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-010313-141354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030563706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.29.1.435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032018473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02265235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041269977", 
          "https://doi.org/10.1007/bf02265235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02265235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041269977", 
          "https://doi.org/10.1007/bf02265235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jz067i008p03011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042914750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9064-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045021799", 
          "https://doi.org/10.1007/s10546-006-9064-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9064-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045021799", 
          "https://doi.org/10.1007/s10546-006-9064-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047697668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2004.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049061740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jd00777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049184723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-2729-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049761933", 
          "https://doi.org/10.1007/s10546-004-2729-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-2729-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049761933", 
          "https://doi.org/10.1007/s10546-004-2729-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-2729-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049761933", 
          "https://doi.org/10.1007/s10546-004-2729-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112077001554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053873917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112092002842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053944580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081002164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053948136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112091003786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053997726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1324706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1521728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057715989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1897008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057831036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3097005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057911910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3140032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057915657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058120380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092412557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-17-0134.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092841220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099673227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2018.693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107299928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2018.693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107299928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2018.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107363125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2018.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107363125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112730714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.3524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112730714"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "One of the hallmarks of the stable boundary layer is the switching between turbulent (active) and non-turbulent (passive) states. In very stable conditions, the boundary layer becomes layered with fully-developed turbulence confined to a shallow region near the surface. In the quiescent region above this near-surface layer, the turbulence is weak, intermittent and detached from the ground. These conditions promote the development of a low-level jet that re-energizes the turbulence through an elevated shear layer. The Monin\u2013Obukhov similarity theory fails in the layered stable boundary layer thereby making the quantification of mixing and transport properties challenging for numerical models. In the present study, multi-level time series from a tall (140 m) meteorological tower are analyzed using the telegraphic approximation to investigate analogies with a general class of intermittency models that include self-organized criticality. The analogy between turbulence and self-organized criticality is restricted to clustering properties of sign changes of flow variables for describing switching between turbulent and non-turbulent states. The telegraphic approximation provides a new perspective on clustering and on external and internal intermittency for periods dominated by turbulent motions, a low-level jet and submeso motions. Some of these periods are characterized by the absence of turbulence but occasionally punctuated by bursts of intermittent turbulent events. The switching probability of active\u2013inactive states and the lifetimes of inactive states (related to intermittent turbulent bursts) show evidence of self-organized-criticality like behaviour in terms of scaling laws. The coexistence of self-organized criticality and intermittent turbulence may offer new perspectives on the genesis of scaling laws and similarity arguments, thereby improving the performance of numerical models in the stable boundary layer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10546-019-00441-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3123927", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3494109", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6933012", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "type": "Periodical"
      }
    ], 
    "name": "Submeso Motions and Intermittent Turbulence Across a Nocturnal Low-Level Jet: A Self-Organized Criticality Analogy", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c20a4cc5e3ed3b7a59b82259629f048f3e4a000cf522131b75e6b7b798765dec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10546-019-00441-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113047436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10546-019-00441-8", 
      "https://app.dimensions.ai/details/publication/pub.1113047436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78938_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10546-019-00441-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10546-019-00441-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10546-019-00441-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10546-019-00441-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10546-019-00441-8'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      65 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10546-019-00441-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N116268bbe55945ebabf2bf93ad31a0fc
4 schema:citation sg:pub.10.1007/bf00709217
5 sg:pub.10.1007/bf02265235
6 sg:pub.10.1007/s001620050093
7 sg:pub.10.1007/s10546-004-2729-0
8 sg:pub.10.1007/s10546-006-9064-6
9 sg:pub.10.1007/s10546-008-9342-6
10 sg:pub.10.1007/s10955-006-9112-0
11 sg:pub.10.1023/a:1014917120110
12 sg:pub.10.1023/a:1018909000098
13 sg:pub.10.1023/b:boun.0000016502.52590.af
14 https://doi.org/10.1002/qj.2693
15 https://doi.org/10.1002/qj.3192
16 https://doi.org/10.1002/qj.3224
17 https://doi.org/10.1002/qj.3524
18 https://doi.org/10.1016/j.physa.2004.05.008
19 https://doi.org/10.1017/jfm.2018.693
20 https://doi.org/10.1017/jfm.2018.695
21 https://doi.org/10.1017/s0022112077001554
22 https://doi.org/10.1017/s0022112081002164
23 https://doi.org/10.1017/s0022112091003786
24 https://doi.org/10.1017/s0022112092002842
25 https://doi.org/10.1029/2008wr007352
26 https://doi.org/10.1029/2011jd016167
27 https://doi.org/10.1029/97jd00777
28 https://doi.org/10.1029/jz067i008p03011
29 https://doi.org/10.1063/1.1324706
30 https://doi.org/10.1063/1.1521728
31 https://doi.org/10.1063/1.1897008
32 https://doi.org/10.1063/1.3097005
33 https://doi.org/10.1063/1.3140032
34 https://doi.org/10.1063/1.868196
35 https://doi.org/10.1063/1.870386
36 https://doi.org/10.1103/physreva.38.364
37 https://doi.org/10.1103/physreve.69.056314
38 https://doi.org/10.1103/physrevlett.67.3243
39 https://doi.org/10.1103/physrevlett.99.025001
40 https://doi.org/10.1146/annurev-fluid-010313-141354
41 https://doi.org/10.1146/annurev.fluid.29.1.435
42 https://doi.org/10.1175/bams-d-17-0134.1
43 https://doi.org/10.1175/jas-d-14-0311.1
44 https://doi.org/10.1175/jas4002.1
45 schema:datePublished 2019-03-27
46 schema:datePublishedReg 2019-03-27
47 schema:description One of the hallmarks of the stable boundary layer is the switching between turbulent (active) and non-turbulent (passive) states. In very stable conditions, the boundary layer becomes layered with fully-developed turbulence confined to a shallow region near the surface. In the quiescent region above this near-surface layer, the turbulence is weak, intermittent and detached from the ground. These conditions promote the development of a low-level jet that re-energizes the turbulence through an elevated shear layer. The Monin–Obukhov similarity theory fails in the layered stable boundary layer thereby making the quantification of mixing and transport properties challenging for numerical models. In the present study, multi-level time series from a tall (140 m) meteorological tower are analyzed using the telegraphic approximation to investigate analogies with a general class of intermittency models that include self-organized criticality. The analogy between turbulence and self-organized criticality is restricted to clustering properties of sign changes of flow variables for describing switching between turbulent and non-turbulent states. The telegraphic approximation provides a new perspective on clustering and on external and internal intermittency for periods dominated by turbulent motions, a low-level jet and submeso motions. Some of these periods are characterized by the absence of turbulence but occasionally punctuated by bursts of intermittent turbulent events. The switching probability of active–inactive states and the lifetimes of inactive states (related to intermittent turbulent bursts) show evidence of self-organized-criticality like behaviour in terms of scaling laws. The coexistence of self-organized criticality and intermittent turbulence may offer new perspectives on the genesis of scaling laws and similarity arguments, thereby improving the performance of numerical models in the stable boundary layer.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf sg:journal.1049385
52 schema:name Submeso Motions and Intermittent Turbulence Across a Nocturnal Low-Level Jet: A Self-Organized Criticality Analogy
53 schema:pagination 1-27
54 schema:productId N24c25a1604c444e9ade2ad089f6c4ca3
55 N8f5b1a8466344669b3eb3696151aa33d
56 Nc01b0371329647c29f759f176b5e3f3b
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113047436
58 https://doi.org/10.1007/s10546-019-00441-8
59 schema:sdDatePublished 2019-04-11T13:18
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N1e1f090c41ec42f4bf5f6abb0d4cf632
62 schema:url https://link.springer.com/10.1007%2Fs10546-019-00441-8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N116268bbe55945ebabf2bf93ad31a0fc rdf:first N39d07abc08614a238c6a250314603385
67 rdf:rest Nae30e11b69534d6cb979340712735a63
68 N129ac75f8ee449d2a23e55ede181d154 schema:affiliation https://www.grid.ac/institutes/grid.411239.c
69 schema:familyName Acevedo
70 schema:givenName Otavio
71 rdf:type schema:Person
72 N1e1f090c41ec42f4bf5f6abb0d4cf632 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N24c25a1604c444e9ade2ad089f6c4ca3 schema:name doi
75 schema:value 10.1007/s10546-019-00441-8
76 rdf:type schema:PropertyValue
77 N39d07abc08614a238c6a250314603385 schema:affiliation https://www.grid.ac/institutes/grid.435667.5
78 schema:familyName Cava
79 schema:givenName Daniela
80 rdf:type schema:Person
81 N572fef23ec2741b6ba5417e728ddb0a4 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
82 schema:familyName Katul
83 schema:givenName Gabriel
84 rdf:type schema:Person
85 N63d7aa5df3304e7e98cae17ba2db83d4 schema:affiliation https://www.grid.ac/institutes/grid.411239.c
86 schema:familyName Mortarini
87 schema:givenName Luca
88 rdf:type schema:Person
89 N806820565c0e44b5a2d1c71fb2e697da rdf:first N572fef23ec2741b6ba5417e728ddb0a4
90 rdf:rest rdf:nil
91 N8a64f5296ca445a3a3c3275f6f1e2506 schema:affiliation https://www.grid.ac/institutes/grid.12711.34
92 schema:familyName Giostra
93 schema:givenName Umberto
94 rdf:type schema:Person
95 N8f5b1a8466344669b3eb3696151aa33d schema:name dimensions_id
96 schema:value pub.1113047436
97 rdf:type schema:PropertyValue
98 Naa4b5f33a53c46e3af245ce2e0555ad9 rdf:first N129ac75f8ee449d2a23e55ede181d154
99 rdf:rest N806820565c0e44b5a2d1c71fb2e697da
100 Nae30e11b69534d6cb979340712735a63 rdf:first N63d7aa5df3304e7e98cae17ba2db83d4
101 rdf:rest Nd484a0c0b4154fc287497f937e302a6b
102 Nc01b0371329647c29f759f176b5e3f3b schema:name readcube_id
103 schema:value c20a4cc5e3ed3b7a59b82259629f048f3e4a000cf522131b75e6b7b798765dec
104 rdf:type schema:PropertyValue
105 Nd484a0c0b4154fc287497f937e302a6b rdf:first N8a64f5296ca445a3a3c3275f6f1e2506
106 rdf:rest Naa4b5f33a53c46e3af245ce2e0555ad9
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
111 schema:name Interdisciplinary Engineering
112 rdf:type schema:DefinedTerm
113 sg:grant.3123927 http://pending.schema.org/fundedItem sg:pub.10.1007/s10546-019-00441-8
114 rdf:type schema:MonetaryGrant
115 sg:grant.3494109 http://pending.schema.org/fundedItem sg:pub.10.1007/s10546-019-00441-8
116 rdf:type schema:MonetaryGrant
117 sg:grant.6933012 http://pending.schema.org/fundedItem sg:pub.10.1007/s10546-019-00441-8
118 rdf:type schema:MonetaryGrant
119 sg:journal.1049385 schema:issn 0006-8314
120 1573-1472
121 schema:name Boundary-Layer Meteorology
122 rdf:type schema:Periodical
123 sg:pub.10.1007/bf00709217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007831177
124 https://doi.org/10.1007/bf00709217
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02265235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041269977
127 https://doi.org/10.1007/bf02265235
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s001620050093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023449568
130 https://doi.org/10.1007/s001620050093
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10546-004-2729-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049761933
133 https://doi.org/10.1007/s10546-004-2729-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10546-006-9064-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045021799
136 https://doi.org/10.1007/s10546-006-9064-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10546-008-9342-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016898129
139 https://doi.org/10.1007/s10546-008-9342-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10955-006-9112-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000478085
142 https://doi.org/10.1007/s10955-006-9112-0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1023/a:1014917120110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021527671
145 https://doi.org/10.1023/a:1014917120110
146 rdf:type schema:CreativeWork
147 sg:pub.10.1023/a:1018909000098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919791
148 https://doi.org/10.1023/a:1018909000098
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/b:boun.0000016502.52590.af schema:sameAs https://app.dimensions.ai/details/publication/pub.1011568697
151 https://doi.org/10.1023/b:boun.0000016502.52590.af
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/qj.2693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047697668
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/qj.3192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092412557
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/qj.3224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099673227
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/qj.3524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112730714
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.physa.2004.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049061740
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1017/jfm.2018.693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107299928
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/jfm.2018.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363125
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/s0022112077001554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053873917
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1017/s0022112081002164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053948136
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1017/s0022112091003786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053997726
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1017/s0022112092002842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053944580
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1029/2008wr007352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023115063
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1029/2011jd016167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016615909
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1029/97jd00777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049184723
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1029/jz067i008p03011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042914750
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.1324706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694831
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.1521728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057715989
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.1897008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057831036
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.3097005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057911910
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.3140032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057915657
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.868196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058120380
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.870386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122518
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physreva.38.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478114
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreve.69.056314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030262466
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.67.3243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803651
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.99.025001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000193196
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1146/annurev-fluid-010313-141354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030563706
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev.fluid.29.1.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032018473
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1175/bams-d-17-0134.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092841220
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1175/jas-d-14-0311.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017234150
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1175/jas4002.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027454133
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.12711.34 schema:alternateName University of Urbino
216 schema:name Department of Pure and Applied Sciences (DiSPeA), Università degli Studi di Urbino “Carlo Bo”, Scientific Campus “E. Mattei”, 61029, Urbino, Italy
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
219 schema:name Department of Civil and Environmental Engineering, Duke University, 27708, Durham, NC, USA
220 Nicholas School of the Environment, Duke University, P.O. Box 80328, 27708, Durham, NC, USA
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.411239.c schema:alternateName Universidade Federal de Santa Maria
223 schema:name Institute of Atmospheric Sciences and Climate - National Research Council, Torino, Italy
224 Universidade Federal de Santa Maria, Santa Maria, Brazil
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.435667.5 schema:alternateName Institute of Atmospheric Sciences and Climate
227 schema:name Institute of Atmospheric Sciences and Climate - National Research Council, Torino, Italy
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...