Estimation from Soil Temperature of Soil Thermal Diffusivity and Heat Flux in Sub-surface Layers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

Kedong An, Wenke Wang, Yaqian Zhao, Wenfeng Huang, Li Chen, Zaiyong Zhang, Qiangmin Wang, Wanxin Li

ABSTRACT

Soil thermal parameters are important for calculating the surface energy balance and mass transfer. Previous studies have proposed methods to estimate thermal parameters using field data; however, the application of these methods lacks validation and comprehensive evaluation under different climatic conditions. Here, we evaluate four methods (amplitude, phase shift, conduction–convection and harmonic) to estimate thermal diffusivity (k) under different climatic conditions. Heat flux was simulated and compared with data from heat-flux plates to validate the application of the four methods. The results indicated that, under clear-sky conditions, the harmonic method had the greatest accuracy in estimating k, though it generated large errors on rainy days or under overcast conditions. The conduction–convection method (CCM) provided a reliable estimate of k on rainy days, or under overcast skies, coinciding with increased water movement in the soil profile. The amplitude method, although a simple calculation, had poor accuracy for rainy and overcast conditions. Finally, the phase shift method was shown to be a suitable alternative for CCM to estimate k under overcast conditions, though only when soil moisture content was high. More... »

PAGES

473-488

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10546-015-0096-7

DOI

http://dx.doi.org/10.1007/s10546-015-0096-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006381602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Kedong", 
        "id": "sg:person.010527176205.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527176205.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wenke", 
        "id": "sg:person.01306450545.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306450545.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.7886.1", 
          "name": [
            "UCD Dooge Centre for Water Resources Research, School of Civil, Structural, and Environmental Engineering, University College Dublin, Newstead, Belfield, Dublin 4, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yaqian", 
        "id": "sg:person.01014602570.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014602570.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Wenfeng", 
        "id": "sg:person.013430362763.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430362763.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "id": "sg:person.010204655347.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204655347.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zaiyong", 
        "id": "sg:person.013716163447.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716163447.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qiangmin", 
        "id": "sg:person.013631326605.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013631326605.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang'an University", 
          "id": "https://www.grid.ac/institutes/grid.440661.1", 
          "name": [
            "Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang\u2019an University, Ministry of Education, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wanxin", 
        "id": "sg:person.013434451647.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434451647.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.agrformet.2003.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001369151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2012.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002749901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005534434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1781074b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005742558", 
          "https://doi.org/10.1038/1781074b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-1571(70)90035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006786388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-1571(70)90035-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006786388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1923(95)02323-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013450139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015174083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-200302000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021404318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-200302000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021404318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027754332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ss.0b013e3181cdda3f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029772211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ss.0b013e3181cdda3f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029772211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ss.0b013e3181cdda3f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029772211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.8193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031310536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cageo.2012.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031783282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-7403-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310602", 
          "https://doi.org/10.1007/s10546-004-7403-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-7403-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310602", 
          "https://doi.org/10.1007/s10546-004-7403-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039551980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1923(95)02254-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-8661-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040215409", 
          "https://doi.org/10.1007/s10546-004-8661-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-16-1817-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040622899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-008-0757-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049613752", 
          "https://doi.org/10.1007/s00376-008-0757-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-008-0757-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049613752", 
          "https://doi.org/10.1007/s00376-008-0757-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690060115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050334444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1781074a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051428635", 
          "https://doi.org/10.1038/1781074a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3057871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057902693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1986707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062246772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1680/wama.10.00088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068242183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1980.03615995004400060039x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069043402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1983.03615995004700010005x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069043977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1986.03615995005000010001x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069044887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj1993.03615995005700020007x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069047286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2000.6441285x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2012.0023n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069052232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2006.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069053736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2014.06.0073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069054764"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "Soil thermal parameters are important for calculating the surface energy balance and mass transfer. Previous studies have proposed methods to estimate thermal parameters using field data; however, the application of these methods lacks validation and comprehensive evaluation under different climatic conditions. Here, we evaluate four methods (amplitude, phase shift, conduction\u2013convection and harmonic) to estimate thermal diffusivity (k) under different climatic conditions. Heat flux was simulated and compared with data from heat-flux plates to validate the application of the four methods. The results indicated that, under clear-sky conditions, the harmonic method had the greatest accuracy in estimating k, though it generated large errors on rainy days or under overcast conditions. The conduction\u2013convection method (CCM) provided a reliable estimate of k on rainy days, or under overcast skies, coinciding with increased water movement in the soil profile. The amplitude method, although a simple calculation, had poor accuracy for rainy and overcast conditions. Finally, the phase shift method was shown to be a suitable alternative for CCM to estimate k under overcast conditions, though only when soil moisture content was high.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10546-015-0096-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "158"
      }
    ], 
    "name": "Estimation from Soil Temperature of Soil Thermal Diffusivity and Heat Flux in Sub-surface Layers", 
    "pagination": "473-488", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e65b784119b9556b84c4d674de4cd9e09da33901d760d6553612e128bb5a30e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10546-015-0096-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006381602"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10546-015-0096-7", 
      "https://app.dimensions.ai/details/publication/pub.1006381602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10546-015-0096-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10546-015-0096-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10546-015-0096-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10546-015-0096-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10546-015-0096-7'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10546-015-0096-7 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N94c43fec7eb04be6a5fc83a509dc6d13
4 schema:citation sg:pub.10.1007/s00376-008-0757-2
5 sg:pub.10.1007/s10546-004-7403-z
6 sg:pub.10.1007/s10546-004-8661-5
7 sg:pub.10.1038/1781074a0
8 sg:pub.10.1038/1781074b0
9 https://doi.org/10.1002/aic.690060115
10 https://doi.org/10.1002/hyp.8193
11 https://doi.org/10.1016/0002-1571(70)90035-x
12 https://doi.org/10.1016/0168-1923(95)02254-6
13 https://doi.org/10.1016/0168-1923(95)02323-2
14 https://doi.org/10.1016/j.advwatres.2012.04.012
15 https://doi.org/10.1016/j.agrformet.2003.09.005
16 https://doi.org/10.1016/j.cageo.2012.05.020
17 https://doi.org/10.1016/j.jhydrol.2003.10.015
18 https://doi.org/10.1016/j.jhydrol.2008.08.014
19 https://doi.org/10.1016/j.jhydrol.2009.04.020
20 https://doi.org/10.1016/j.jhydrol.2011.03.033
21 https://doi.org/10.1063/1.3057871
22 https://doi.org/10.1097/00010694-200302000-00004
23 https://doi.org/10.1097/ss.0b013e3181cdda3f
24 https://doi.org/10.1119/1.1986707
25 https://doi.org/10.1680/wama.10.00088
26 https://doi.org/10.2136/sssaj1980.03615995004400060039x
27 https://doi.org/10.2136/sssaj1983.03615995004700010005x
28 https://doi.org/10.2136/sssaj1986.03615995005000010001x
29 https://doi.org/10.2136/sssaj1993.03615995005700020007x
30 https://doi.org/10.2136/sssaj2000.6441285x
31 https://doi.org/10.2136/sssaj2012.0023n
32 https://doi.org/10.2136/vzj2006.0007
33 https://doi.org/10.2136/vzj2014.06.0073
34 https://doi.org/10.5194/hess-16-1817-2012
35 schema:datePublished 2016-03
36 schema:datePublishedReg 2016-03-01
37 schema:description Soil thermal parameters are important for calculating the surface energy balance and mass transfer. Previous studies have proposed methods to estimate thermal parameters using field data; however, the application of these methods lacks validation and comprehensive evaluation under different climatic conditions. Here, we evaluate four methods (amplitude, phase shift, conduction–convection and harmonic) to estimate thermal diffusivity (k) under different climatic conditions. Heat flux was simulated and compared with data from heat-flux plates to validate the application of the four methods. The results indicated that, under clear-sky conditions, the harmonic method had the greatest accuracy in estimating k, though it generated large errors on rainy days or under overcast conditions. The conduction–convection method (CCM) provided a reliable estimate of k on rainy days, or under overcast skies, coinciding with increased water movement in the soil profile. The amplitude method, although a simple calculation, had poor accuracy for rainy and overcast conditions. Finally, the phase shift method was shown to be a suitable alternative for CCM to estimate k under overcast conditions, though only when soil moisture content was high.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N19b0f17f9c944102870e3aeb2a47ad4a
42 N1b3a6093a83449c79dd54e4daeac7f78
43 sg:journal.1049385
44 schema:name Estimation from Soil Temperature of Soil Thermal Diffusivity and Heat Flux in Sub-surface Layers
45 schema:pagination 473-488
46 schema:productId N1a228967ef224b2db464372716479f7b
47 N4b1addde7fac4aaeb1a93f6494922688
48 N5d624b1992a14648be9fa3ee26f3447a
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006381602
50 https://doi.org/10.1007/s10546-015-0096-7
51 schema:sdDatePublished 2019-04-10T19:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N219bd9f19b4f426992cef85bb569f96c
54 schema:url http://link.springer.com/10.1007%2Fs10546-015-0096-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N100a8d474dc74d54ba80a4f1bf62e0d1 rdf:first sg:person.01014602570.10
59 rdf:rest Nac3e41f9e48a4564b6cf1ba4151533c4
60 N19b0f17f9c944102870e3aeb2a47ad4a schema:volumeNumber 158
61 rdf:type schema:PublicationVolume
62 N1a228967ef224b2db464372716479f7b schema:name dimensions_id
63 schema:value pub.1006381602
64 rdf:type schema:PropertyValue
65 N1b3a6093a83449c79dd54e4daeac7f78 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 N1e37655e6885457c9dc8e53f1b9bdcb9 rdf:first sg:person.013434451647.01
68 rdf:rest rdf:nil
69 N219bd9f19b4f426992cef85bb569f96c schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N3e89b18b262f43c1b9eb65211eac6599 rdf:first sg:person.01306450545.93
72 rdf:rest N100a8d474dc74d54ba80a4f1bf62e0d1
73 N4b1addde7fac4aaeb1a93f6494922688 schema:name doi
74 schema:value 10.1007/s10546-015-0096-7
75 rdf:type schema:PropertyValue
76 N524984d60279488bb9bec7af7ab2ffc9 rdf:first sg:person.013716163447.24
77 rdf:rest N96e8657af8ab4040b747c4dc57bf712d
78 N5baf0727af2b439dbfe3d8ebedea44f3 rdf:first sg:person.010204655347.52
79 rdf:rest N524984d60279488bb9bec7af7ab2ffc9
80 N5d624b1992a14648be9fa3ee26f3447a schema:name readcube_id
81 schema:value 1e65b784119b9556b84c4d674de4cd9e09da33901d760d6553612e128bb5a30e
82 rdf:type schema:PropertyValue
83 N94c43fec7eb04be6a5fc83a509dc6d13 rdf:first sg:person.010527176205.36
84 rdf:rest N3e89b18b262f43c1b9eb65211eac6599
85 N96e8657af8ab4040b747c4dc57bf712d rdf:first sg:person.013631326605.21
86 rdf:rest N1e37655e6885457c9dc8e53f1b9bdcb9
87 Nac3e41f9e48a4564b6cf1ba4151533c4 rdf:first sg:person.013430362763.88
88 rdf:rest N5baf0727af2b439dbfe3d8ebedea44f3
89 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
90 schema:name Environmental Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
93 schema:name Soil Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1049385 schema:issn 0006-8314
96 1573-1472
97 schema:name Boundary-Layer Meteorology
98 rdf:type schema:Periodical
99 sg:person.01014602570.10 schema:affiliation https://www.grid.ac/institutes/grid.7886.1
100 schema:familyName Zhao
101 schema:givenName Yaqian
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014602570.10
103 rdf:type schema:Person
104 sg:person.010204655347.52 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
105 schema:familyName Chen
106 schema:givenName Li
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204655347.52
108 rdf:type schema:Person
109 sg:person.010527176205.36 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
110 schema:familyName An
111 schema:givenName Kedong
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527176205.36
113 rdf:type schema:Person
114 sg:person.01306450545.93 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
115 schema:familyName Wang
116 schema:givenName Wenke
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306450545.93
118 rdf:type schema:Person
119 sg:person.013430362763.88 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
120 schema:familyName Huang
121 schema:givenName Wenfeng
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430362763.88
123 rdf:type schema:Person
124 sg:person.013434451647.01 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
125 schema:familyName Li
126 schema:givenName Wanxin
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434451647.01
128 rdf:type schema:Person
129 sg:person.013631326605.21 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
130 schema:familyName Wang
131 schema:givenName Qiangmin
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013631326605.21
133 rdf:type schema:Person
134 sg:person.013716163447.24 schema:affiliation https://www.grid.ac/institutes/grid.440661.1
135 schema:familyName Zhang
136 schema:givenName Zaiyong
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716163447.24
138 rdf:type schema:Person
139 sg:pub.10.1007/s00376-008-0757-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049613752
140 https://doi.org/10.1007/s00376-008-0757-2
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10546-004-7403-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310602
143 https://doi.org/10.1007/s10546-004-7403-z
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10546-004-8661-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040215409
146 https://doi.org/10.1007/s10546-004-8661-5
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/1781074a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051428635
149 https://doi.org/10.1038/1781074a0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/1781074b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005742558
152 https://doi.org/10.1038/1781074b0
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/aic.690060115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050334444
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/hyp.8193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031310536
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0002-1571(70)90035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006786388
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0168-1923(95)02254-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820264
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0168-1923(95)02323-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013450139
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.advwatres.2012.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002749901
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.agrformet.2003.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001369151
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.cageo.2012.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031783282
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jhydrol.2003.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027754332
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jhydrol.2008.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039551980
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jhydrol.2009.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005534434
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jhydrol.2011.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015174083
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.3057871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057902693
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1097/00010694-200302000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021404318
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1097/ss.0b013e3181cdda3f schema:sameAs https://app.dimensions.ai/details/publication/pub.1029772211
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1119/1.1986707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062246772
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1680/wama.10.00088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068242183
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2136/sssaj1980.03615995004400060039x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043402
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2136/sssaj1983.03615995004700010005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069043977
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2136/sssaj1986.03615995005000010001x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069044887
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2136/sssaj1993.03615995005700020007x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069047286
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2136/sssaj2000.6441285x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049165
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2136/sssaj2012.0023n schema:sameAs https://app.dimensions.ai/details/publication/pub.1069052232
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2136/vzj2006.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069053736
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2136/vzj2014.06.0073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054764
203 rdf:type schema:CreativeWork
204 https://doi.org/10.5194/hess-16-1817-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040622899
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.440661.1 schema:alternateName Chang'an University
207 schema:name Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang’an University, Ministry of Education, Xi’an, People’s Republic of China
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.7886.1 schema:alternateName University College Dublin
210 schema:name UCD Dooge Centre for Water Resources Research, School of Civil, Structural, and Environmental Engineering, University College Dublin, Newstead, Belfield, Dublin 4, Ireland
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...