Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

M. Haeffelin, F. Angelini, Y. Morille, G. Martucci, S. Frey, G. P. Gobbi, S. Lolli, C. D. O’Dowd, L. Sauvage, I. Xueref-Rémy, B. Wastine, D. G. Feist

ABSTRACT

The determination of the depth of daytime and nighttime mixing layers must be known very accurately to relate boundary-layer concentrations of gases or particles to upstream fluxes. The mixing-height is parametrized in numerical weather prediction models, so improving the determination of the mixing height will improve the quality of the estimated gas and particle budgets. Datasets of mixing-height diurnal cycles with high temporal and spatial resolutions are sought by various end users. Lidars and ceilometers provide vertical profiles of backscatter from aerosol particles. As aerosols are predominantly concentrated in the mixing layer, lidar backscatter profiles can be used to trace the depth of the mixing layer. Large numbers of automatic profiling lidars and ceilometers are deployed by meteorological services and other agencies in several European countries providing systems to monitor the mixing height on temporal and spatial scales of unprecedented density. We investigate limitations and capabilities of existing mixing height retrieval algorithms by applying five different retrieval techniques to three different lidars and ceilometers deployed during two 1-month campaigns. We studied three important steps in the mixing height retrieval process, namely the lidar/ceilometer pre-processing to reach sufficient signal-to-noise ratio, gradient detection techniques to find the significant aerosol gradients, and finally quality control and layer attribution to identify the actual mixing height from multiple possible layer detections. We found that layer attribution is by far the most uncertain step. We tested different gradient detection techniques, and found no evidence that the first derivative, wavelet transform, and two-dimensional derivative techniques have different skills to detect one or multiple significant aerosol gradients from lidar and ceilometer attenuated backscatter. However, our study shows that, when mixing height retrievals from a ultraviolet lidar and a near-infrared ceilometer agreed, they were 25–40% more likely to agree with an independent radiosonde mixing height retrieval than when each lidar or ceilometer was used alone. Furthermore, we point to directions that may assist the layer attribution step, for instance using commonly available surface measurements of radiation and temperature to derive surface sensible heat fluxes as a proxy for the intensity of convective mixing. It is a worthwhile effort to pursue such studies so that within a few years automatic profiling lidar and ceilometer networks can be utilized efficiently to monitor mixing heights at the European scale. More... »

PAGES

49-75

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10546-011-9643-z

DOI

http://dx.doi.org/10.1007/s10546-011-9643-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043848845


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Pierre-Simon Laplace", 
          "id": "https://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "Institut Pierre-Simon Laplace, CNRS-Ecole Polytechnique, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haeffelin", 
        "givenName": "M.", 
        "id": "sg:person.01212570040.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212570040.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Scienze dell\u2019Atmosfera e del Clima, CNR, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angelini", 
        "givenName": "F.", 
        "id": "sg:person.01247012130.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247012130.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique", 
          "id": "https://www.grid.ac/institutes/grid.463916.f", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, CNRS-Ecole Polytechnique, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morille", 
        "givenName": "Y.", 
        "id": "sg:person.010235646567.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235646567.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Ireland, Galway", 
          "id": "https://www.grid.ac/institutes/grid.6142.1", 
          "name": [
            "National University of Ireland, Galway, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martucci", 
        "givenName": "G.", 
        "id": "sg:person.016304652077.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304652077.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jenoptik (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.436091.9", 
          "name": [
            "Jenoptik, ESW GmbH, Teltow, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "S.", 
        "id": "sg:person.010231320775.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231320775.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.5326.2", 
          "name": [
            "Istituto di Scienze dell\u2019Atmosfera e del Clima, CNR, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gobbi", 
        "givenName": "G. P.", 
        "id": "sg:person.0754400254.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754400254.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Leosphere, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lolli", 
        "givenName": "S.", 
        "id": "sg:person.010117233121.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010117233121.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Ireland, Galway", 
          "id": "https://www.grid.ac/institutes/grid.6142.1", 
          "name": [
            "National University of Ireland, Galway, Ireland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Dowd", 
        "givenName": "C. D.", 
        "id": "sg:person.0754337713.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754337713.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Leosphere, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauvage", 
        "givenName": "L.", 
        "id": "sg:person.010446435052.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010446435052.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences du Climat et de l'Environnement", 
          "id": "https://www.grid.ac/institutes/grid.457340.1", 
          "name": [
            "Laboratoire des Sciences du Climat et l\u2019Environnement, CEA-CNRS, Saclay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xueref-R\u00e9my", 
        "givenName": "I.", 
        "id": "sg:person.012463363021.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463363021.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences du Climat et de l'Environnement", 
          "id": "https://www.grid.ac/institutes/grid.457340.1", 
          "name": [
            "Laboratoire des Sciences du Climat et l\u2019Environnement, CEA-CNRS, Saclay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wastine", 
        "givenName": "B.", 
        "id": "sg:person.013545703301.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545703301.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biogeochemistry", 
          "id": "https://www.grid.ac/institutes/grid.419500.9", 
          "name": [
            "Max Planck Institute for Biogeochemistry, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feist", 
        "givenName": "D. G.", 
        "id": "sg:person.011000134271.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000134271.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000509571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jtecha1134.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001318195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(2003)020<1092:fbltao>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005389817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jtecha1326.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007553898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-5891-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007718411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1999)016<0953:tdomld>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007787652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-010-9474-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010220512", 
          "https://doi.org/10.1007/s10546-010-9474-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-010-9474-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010220512", 
          "https://doi.org/10.1007/s10546-010-9474-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-010-9474-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010220512", 
          "https://doi.org/10.1007/s10546-010-9474-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-8-591-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011632262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech2008.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013196398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015604111", 
          "https://doi.org/10.1007/s10546-006-9068-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015604111", 
          "https://doi.org/10.1007/s10546-006-9068-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015604111", 
          "https://doi.org/10.1007/s10546-006-9068-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016702098", 
          "https://doi.org/10.1007/978-94-009-3027-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016702098", 
          "https://doi.org/10.1007/978-94-009-3027-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-8-7281-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018184816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2009.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019572704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10291-2_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020189912", 
          "https://doi.org/10.1007/978-3-642-10291-2_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10291-2_38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020189912", 
          "https://doi.org/10.1007/978-3-642-10291-2_38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(99)00349-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021952232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/amtd-3-3643-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022278777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1000258318944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034668802", 
          "https://doi.org/10.1023/a:1000258318944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/angeo-23-253-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036769288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/angeo-23-253-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036769288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00120423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037566333", 
          "https://doi.org/10.1007/bf00120423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00120423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037566333", 
          "https://doi.org/10.1007/bf00120423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573061", 
          "https://doi.org/10.1007/s10546-006-9103-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573061", 
          "https://doi.org/10.1007/s10546-006-9103-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-006-9103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573061", 
          "https://doi.org/10.1007/s10546-006-9103-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9020-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043247197", 
          "https://doi.org/10.1007/s10546-005-9020-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9020-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043247197", 
          "https://doi.org/10.1007/s10546-005-9020-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-6-1485-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045726995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-6-1485-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045726995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046920612", 
          "https://doi.org/10.1007/s10546-005-9035-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046920612", 
          "https://doi.org/10.1007/s10546-005-9035-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1973)030<0558:amftdo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046926367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304884", 
          "https://doi.org/10.1007/s10546-005-9005-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9005-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048304884", 
          "https://doi.org/10.1007/s10546-005-9005-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1967)006<1039:mdwsaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052491455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1986)025<0990:lmowit>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053354081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rpd/ncp219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060017773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rpd/ncp219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060017773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1986.4767851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/0941-2948/2008/0312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062699762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech2036.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063455897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.38.000945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065114036"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "The determination of the depth of daytime and nighttime mixing layers must be known very accurately to relate boundary-layer concentrations of gases or particles to upstream fluxes. The mixing-height is parametrized in numerical weather prediction models, so improving the determination of the mixing height will improve the quality of the estimated gas and particle budgets. Datasets of mixing-height diurnal cycles with high temporal and spatial resolutions are sought by various end users. Lidars and ceilometers provide vertical profiles of backscatter from aerosol particles. As aerosols are predominantly concentrated in the mixing layer, lidar backscatter profiles can be used to trace the depth of the mixing layer. Large numbers of automatic profiling lidars and ceilometers are deployed by meteorological services and other agencies in several European countries providing systems to monitor the mixing height on temporal and spatial scales of unprecedented density. We investigate limitations and capabilities of existing mixing height retrieval algorithms by applying five different retrieval techniques to three different lidars and ceilometers deployed during two 1-month campaigns. We studied three important steps in the mixing height retrieval process, namely the lidar/ceilometer pre-processing to reach sufficient signal-to-noise ratio, gradient detection techniques to find the significant aerosol gradients, and finally quality control and layer attribution to identify the actual mixing height from multiple possible layer detections. We found that layer attribution is by far the most uncertain step. We tested different gradient detection techniques, and found no evidence that the first derivative, wavelet transform, and two-dimensional derivative techniques have different skills to detect one or multiple significant aerosol gradients from lidar and ceilometer attenuated backscatter. However, our study shows that, when mixing height retrievals from a ultraviolet lidar and a near-infrared ceilometer agreed, they were 25\u201340% more likely to agree with an independent radiosonde mixing height retrieval than when each lidar or ceilometer was used alone. Furthermore, we point to directions that may assist the layer attribution step, for instance using commonly available surface measurements of radiation and temperature to derive surface sensible heat fluxes as a proxy for the intensity of convective mixing. It is a worthwhile effort to pursue such studies so that within a few years automatic profiling lidar and ceilometer networks can be utilized efficiently to monitor mixing heights at the European scale.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10546-011-9643-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "143"
      }
    ], 
    "name": "Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe", 
    "pagination": "49-75", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0de8c0c1222b98f336f7d213ce3448a2b6f7a9de3fa2b033114c9937c0c1886"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10546-011-9643-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043848845"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10546-011-9643-z", 
      "https://app.dimensions.ai/details/publication/pub.1043848845"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10546-011-9643-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10546-011-9643-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10546-011-9643-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10546-011-9643-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10546-011-9643-z'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10546-011-9643-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N18ca8a818a7b438498d18d3f37c2fa62
4 schema:citation sg:pub.10.1007/978-3-642-10291-2_38
5 sg:pub.10.1007/978-94-009-3027-8
6 sg:pub.10.1007/bf00120423
7 sg:pub.10.1007/s10546-005-9005-9
8 sg:pub.10.1007/s10546-005-9020-x
9 sg:pub.10.1007/s10546-005-9035-3
10 sg:pub.10.1007/s10546-006-9068-2
11 sg:pub.10.1007/s10546-006-9103-3
12 sg:pub.10.1007/s10546-010-9474-3
13 sg:pub.10.1023/a:1000258318944
14 https://doi.org/10.1016/j.atmosenv.2009.08.021
15 https://doi.org/10.1016/s1352-2310(99)00349-0
16 https://doi.org/10.1093/rpd/ncp219
17 https://doi.org/10.1109/tpami.1986.4767851
18 https://doi.org/10.1127/0941-2948/2008/0312
19 https://doi.org/10.1175/1520-0426(1999)016<0953:tdomld>2.0.co;2
20 https://doi.org/10.1175/1520-0426(2003)020<1092:fbltao>2.0.co;2
21 https://doi.org/10.1175/1520-0450(1967)006<1039:mdwsaa>2.0.co;2
22 https://doi.org/10.1175/1520-0450(1986)025<0990:lmowit>2.0.co;2
23 https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2
24 https://doi.org/10.1175/1520-0469(1973)030<0558:amftdo>2.0.co;2
25 https://doi.org/10.1175/2008jtecha1134.1
26 https://doi.org/10.1175/2009jtecha1326.1
27 https://doi.org/10.1175/jtech2008.1
28 https://doi.org/10.1175/jtech2036.1
29 https://doi.org/10.1364/ao.38.000945
30 https://doi.org/10.5194/acp-10-5891-2010
31 https://doi.org/10.5194/acp-6-1485-2006
32 https://doi.org/10.5194/acp-8-591-2008
33 https://doi.org/10.5194/acp-8-7281-2008
34 https://doi.org/10.5194/amtd-3-3643-2010
35 https://doi.org/10.5194/angeo-23-253-2005
36 schema:datePublished 2012-04
37 schema:datePublishedReg 2012-04-01
38 schema:description The determination of the depth of daytime and nighttime mixing layers must be known very accurately to relate boundary-layer concentrations of gases or particles to upstream fluxes. The mixing-height is parametrized in numerical weather prediction models, so improving the determination of the mixing height will improve the quality of the estimated gas and particle budgets. Datasets of mixing-height diurnal cycles with high temporal and spatial resolutions are sought by various end users. Lidars and ceilometers provide vertical profiles of backscatter from aerosol particles. As aerosols are predominantly concentrated in the mixing layer, lidar backscatter profiles can be used to trace the depth of the mixing layer. Large numbers of automatic profiling lidars and ceilometers are deployed by meteorological services and other agencies in several European countries providing systems to monitor the mixing height on temporal and spatial scales of unprecedented density. We investigate limitations and capabilities of existing mixing height retrieval algorithms by applying five different retrieval techniques to three different lidars and ceilometers deployed during two 1-month campaigns. We studied three important steps in the mixing height retrieval process, namely the lidar/ceilometer pre-processing to reach sufficient signal-to-noise ratio, gradient detection techniques to find the significant aerosol gradients, and finally quality control and layer attribution to identify the actual mixing height from multiple possible layer detections. We found that layer attribution is by far the most uncertain step. We tested different gradient detection techniques, and found no evidence that the first derivative, wavelet transform, and two-dimensional derivative techniques have different skills to detect one or multiple significant aerosol gradients from lidar and ceilometer attenuated backscatter. However, our study shows that, when mixing height retrievals from a ultraviolet lidar and a near-infrared ceilometer agreed, they were 25–40% more likely to agree with an independent radiosonde mixing height retrieval than when each lidar or ceilometer was used alone. Furthermore, we point to directions that may assist the layer attribution step, for instance using commonly available surface measurements of radiation and temperature to derive surface sensible heat fluxes as a proxy for the intensity of convective mixing. It is a worthwhile effort to pursue such studies so that within a few years automatic profiling lidar and ceilometer networks can be utilized efficiently to monitor mixing heights at the European scale.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N39f48a4ec48c4c458cf41c4debfc0080
43 N4800ef2442d64e91bbc1111d12d9bd28
44 sg:journal.1049385
45 schema:name Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe
46 schema:pagination 49-75
47 schema:productId N2240a2c0a5b24f06b8bdefe3f6a2c8d3
48 N709f44ea6c444534a8629ab1e6797e53
49 Nbf81b0cddd024831a1cde200b5744273
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043848845
51 https://doi.org/10.1007/s10546-011-9643-z
52 schema:sdDatePublished 2019-04-10T17:32
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nd72e37cc34d04dd4ae82babbf05e646a
55 schema:url http://link.springer.com/10.1007%2Fs10546-011-9643-z
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N18ca8a818a7b438498d18d3f37c2fa62 rdf:first sg:person.01212570040.33
60 rdf:rest N1fbe462e8afb422f874dceb9b9b84cff
61 N1fbe462e8afb422f874dceb9b9b84cff rdf:first sg:person.01247012130.71
62 rdf:rest N435864b038b9483d904ac402a5a6dd65
63 N2240a2c0a5b24f06b8bdefe3f6a2c8d3 schema:name dimensions_id
64 schema:value pub.1043848845
65 rdf:type schema:PropertyValue
66 N2ff4ef01e1f6494d93b1a53d7b55f40a schema:name Leosphere, Orsay, France
67 rdf:type schema:Organization
68 N33acb939d1934a558897f571c011525b rdf:first sg:person.010231320775.46
69 rdf:rest Ne8682669eefb4101bd690de6ae8dbf40
70 N34ad652623e4400a994a7a671beb26f0 rdf:first sg:person.011000134271.30
71 rdf:rest rdf:nil
72 N39f48a4ec48c4c458cf41c4debfc0080 schema:volumeNumber 143
73 rdf:type schema:PublicationVolume
74 N3a944ddedb7f49a4bd5c8ead814a6939 schema:name Leosphere, Orsay, France
75 rdf:type schema:Organization
76 N435864b038b9483d904ac402a5a6dd65 rdf:first sg:person.010235646567.73
77 rdf:rest N6248ba141f7e48948969285c2063b459
78 N445a7bb9814141d5b7ee55e071621374 rdf:first sg:person.0754337713.77
79 rdf:rest N5d1d48fa1ad34826802765d9e7277444
80 N4800ef2442d64e91bbc1111d12d9bd28 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 N5d1d48fa1ad34826802765d9e7277444 rdf:first sg:person.010446435052.11
83 rdf:rest Nbf03e33e59014ad3bb443be6677c19b6
84 N6248ba141f7e48948969285c2063b459 rdf:first sg:person.016304652077.52
85 rdf:rest N33acb939d1934a558897f571c011525b
86 N709f44ea6c444534a8629ab1e6797e53 schema:name readcube_id
87 schema:value d0de8c0c1222b98f336f7d213ce3448a2b6f7a9de3fa2b033114c9937c0c1886
88 rdf:type schema:PropertyValue
89 N92c5855809994a2f8875975e5a58468a rdf:first sg:person.013545703301.17
90 rdf:rest N34ad652623e4400a994a7a671beb26f0
91 Na0ffe54204954aeba1025687cc019b42 rdf:first sg:person.010117233121.54
92 rdf:rest N445a7bb9814141d5b7ee55e071621374
93 Nbf03e33e59014ad3bb443be6677c19b6 rdf:first sg:person.012463363021.19
94 rdf:rest N92c5855809994a2f8875975e5a58468a
95 Nbf81b0cddd024831a1cde200b5744273 schema:name doi
96 schema:value 10.1007/s10546-011-9643-z
97 rdf:type schema:PropertyValue
98 Nd72e37cc34d04dd4ae82babbf05e646a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Ne8682669eefb4101bd690de6ae8dbf40 rdf:first sg:person.0754400254.82
101 rdf:rest Na0ffe54204954aeba1025687cc019b42
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:journal.1049385 schema:issn 0006-8314
109 1573-1472
110 schema:name Boundary-Layer Meteorology
111 rdf:type schema:Periodical
112 sg:person.010117233121.54 schema:affiliation N3a944ddedb7f49a4bd5c8ead814a6939
113 schema:familyName Lolli
114 schema:givenName S.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010117233121.54
116 rdf:type schema:Person
117 sg:person.010231320775.46 schema:affiliation https://www.grid.ac/institutes/grid.436091.9
118 schema:familyName Frey
119 schema:givenName S.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231320775.46
121 rdf:type schema:Person
122 sg:person.010235646567.73 schema:affiliation https://www.grid.ac/institutes/grid.463916.f
123 schema:familyName Morille
124 schema:givenName Y.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010235646567.73
126 rdf:type schema:Person
127 sg:person.010446435052.11 schema:affiliation N2ff4ef01e1f6494d93b1a53d7b55f40a
128 schema:familyName Sauvage
129 schema:givenName L.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010446435052.11
131 rdf:type schema:Person
132 sg:person.011000134271.30 schema:affiliation https://www.grid.ac/institutes/grid.419500.9
133 schema:familyName Feist
134 schema:givenName D. G.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000134271.30
136 rdf:type schema:Person
137 sg:person.01212570040.33 schema:affiliation https://www.grid.ac/institutes/grid.423115.0
138 schema:familyName Haeffelin
139 schema:givenName M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212570040.33
141 rdf:type schema:Person
142 sg:person.012463363021.19 schema:affiliation https://www.grid.ac/institutes/grid.457340.1
143 schema:familyName Xueref-Rémy
144 schema:givenName I.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463363021.19
146 rdf:type schema:Person
147 sg:person.01247012130.71 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
148 schema:familyName Angelini
149 schema:givenName F.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247012130.71
151 rdf:type schema:Person
152 sg:person.013545703301.17 schema:affiliation https://www.grid.ac/institutes/grid.457340.1
153 schema:familyName Wastine
154 schema:givenName B.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545703301.17
156 rdf:type schema:Person
157 sg:person.016304652077.52 schema:affiliation https://www.grid.ac/institutes/grid.6142.1
158 schema:familyName Martucci
159 schema:givenName G.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304652077.52
161 rdf:type schema:Person
162 sg:person.0754337713.77 schema:affiliation https://www.grid.ac/institutes/grid.6142.1
163 schema:familyName O’Dowd
164 schema:givenName C. D.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754337713.77
166 rdf:type schema:Person
167 sg:person.0754400254.82 schema:affiliation https://www.grid.ac/institutes/grid.5326.2
168 schema:familyName Gobbi
169 schema:givenName G. P.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754400254.82
171 rdf:type schema:Person
172 sg:pub.10.1007/978-3-642-10291-2_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020189912
173 https://doi.org/10.1007/978-3-642-10291-2_38
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/978-94-009-3027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016702098
176 https://doi.org/10.1007/978-94-009-3027-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00120423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037566333
179 https://doi.org/10.1007/bf00120423
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10546-005-9005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048304884
182 https://doi.org/10.1007/s10546-005-9005-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10546-005-9020-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043247197
185 https://doi.org/10.1007/s10546-005-9020-x
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10546-005-9035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046920612
188 https://doi.org/10.1007/s10546-005-9035-3
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s10546-006-9068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015604111
191 https://doi.org/10.1007/s10546-006-9068-2
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s10546-006-9103-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040573061
194 https://doi.org/10.1007/s10546-006-9103-3
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s10546-010-9474-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010220512
197 https://doi.org/10.1007/s10546-010-9474-3
198 rdf:type schema:CreativeWork
199 sg:pub.10.1023/a:1000258318944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034668802
200 https://doi.org/10.1023/a:1000258318944
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.atmosenv.2009.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019572704
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s1352-2310(99)00349-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021952232
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/rpd/ncp219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060017773
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tpami.1986.4767851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742261
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1127/0941-2948/2008/0312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062699762
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/1520-0426(1999)016<0953:tdomld>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007787652
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/1520-0426(2003)020<1092:fbltao>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005389817
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/1520-0450(1967)006<1039:mdwsaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052491455
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1175/1520-0450(1986)025<0990:lmowit>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354081
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000509571
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1175/1520-0469(1973)030<0558:amftdo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046926367
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1175/2008jtecha1134.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001318195
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1175/2009jtecha1326.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007553898
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1175/jtech2008.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013196398
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1175/jtech2036.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063455897
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1364/ao.38.000945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065114036
233 rdf:type schema:CreativeWork
234 https://doi.org/10.5194/acp-10-5891-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007718411
235 rdf:type schema:CreativeWork
236 https://doi.org/10.5194/acp-6-1485-2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045726995
237 rdf:type schema:CreativeWork
238 https://doi.org/10.5194/acp-8-591-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632262
239 rdf:type schema:CreativeWork
240 https://doi.org/10.5194/acp-8-7281-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018184816
241 rdf:type schema:CreativeWork
242 https://doi.org/10.5194/amtd-3-3643-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022278777
243 rdf:type schema:CreativeWork
244 https://doi.org/10.5194/angeo-23-253-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036769288
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.419500.9 schema:alternateName Max Planck Institute for Biogeochemistry
247 schema:name Max Planck Institute for Biogeochemistry, Jena, Germany
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.423115.0 schema:alternateName Institut Pierre-Simon Laplace
250 schema:name Institut Pierre-Simon Laplace, CNRS-Ecole Polytechnique, Paris, France
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.436091.9 schema:alternateName Jenoptik (Germany)
253 schema:name Jenoptik, ESW GmbH, Teltow, Germany
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.457340.1 schema:alternateName Laboratoire des Sciences du Climat et de l'Environnement
256 schema:name Laboratoire des Sciences du Climat et l’Environnement, CEA-CNRS, Saclay, France
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.463916.f schema:alternateName Laboratoire de Météorologie Dynamique
259 schema:name Laboratoire de Météorologie Dynamique, CNRS-Ecole Polytechnique, Palaiseau, France
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.5326.2 schema:alternateName National Research Council
262 schema:name Istituto di Scienze dell’Atmosfera e del Clima, CNR, Rome, Italy
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.6142.1 schema:alternateName National University of Ireland, Galway
265 schema:name National University of Ireland, Galway, Ireland
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...