Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

Barbara Hennemuth, Andrea Lammert

ABSTRACT

The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds More... »

PAGES

181-200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10546-005-9035-3

DOI

http://dx.doi.org/10.1007/s10546-005-9035-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046920612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology", 
          "id": "https://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institute for Meteorology, Bundesstrasse 53, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hennemuth", 
        "givenName": "Barbara", 
        "id": "sg:person.012661012643.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661012643.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology", 
          "id": "https://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institute for Meteorology, Bundesstrasse 53, D-20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammert", 
        "givenName": "Andrea", 
        "id": "sg:person.014665055545.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665055545.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00122760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000170108", 
          "https://doi.org/10.1007/bf00122760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000170108", 
          "https://doi.org/10.1007/bf00122760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000509571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018722923349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007023246", 
          "https://doi.org/10.1023/a:1018722923349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00713744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012522949", 
          "https://doi.org/10.1007/bf00713744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016702098", 
          "https://doi.org/10.1007/978-94-009-3027-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3027-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016702098", 
          "https://doi.org/10.1007/978-94-009-3027-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(99)00349-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021952232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018956525605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033786057", 
          "https://doi.org/10.1023/a:1018956525605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1000258318944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034668802", 
          "https://doi.org/10.1023/a:1000258318944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035631225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02430331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036188361", 
          "https://doi.org/10.1007/bf02430331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02430331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036188361", 
          "https://doi.org/10.1007/bf02430331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-84-2-217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037919768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018798928158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042365467", 
          "https://doi.org/10.1023/a:1018798928158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9020-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043247197", 
          "https://doi.org/10.1007/s10546-005-9020-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-005-9020-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043247197", 
          "https://doi.org/10.1007/s10546-005-9020-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10546-004-1671-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043334096", 
          "https://doi.org/10.1007/s10546-004-1671-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(2000)017<1455:aomfda>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047599009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1998)037<0255:eotezd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051097716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.37.003825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065113307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.37.003845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065113308"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments \u2013 two over land and two over the sea \u2013 are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within \u00b1200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10546-005-9035-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049385", 
        "issn": [
          "0006-8314", 
          "1573-1472"
        ], 
        "name": "Boundary-Layer Meteorology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "name": "Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter", 
    "pagination": "181-200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df834a0db612d673b94a0beb415f5d2a0be863e1b68f6f5ddcbfc95c06fc20c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10546-005-9035-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046920612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10546-005-9035-3", 
      "https://app.dimensions.ai/details/publication/pub.1046920612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10546-005-9035-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10546-005-9035-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10546-005-9035-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10546-005-9035-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10546-005-9035-3'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10546-005-9035-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne1b45d937efb48f3bb83f68499b76225
4 schema:citation sg:pub.10.1007/978-94-009-3027-8
5 sg:pub.10.1007/bf00122760
6 sg:pub.10.1007/bf00713744
7 sg:pub.10.1007/bf02430331
8 sg:pub.10.1007/s10546-004-1671-5
9 sg:pub.10.1007/s10546-005-9020-x
10 sg:pub.10.1023/a:1000258318944
11 sg:pub.10.1023/a:1018722923349
12 sg:pub.10.1023/a:1018798928158
13 sg:pub.10.1023/a:1018956525605
14 https://doi.org/10.1016/s1352-2310(99)00349-0
15 https://doi.org/10.1029/2002jd002748
16 https://doi.org/10.1175/1520-0426(2000)017<1455:aomfda>2.0.co;2
17 https://doi.org/10.1175/1520-0450(1998)037<0255:eotezd>2.0.co;2
18 https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2
19 https://doi.org/10.1175/bams-84-2-217
20 https://doi.org/10.1364/ao.37.003825
21 https://doi.org/10.1364/ao.37.003845
22 schema:datePublished 2006-07
23 schema:datePublishedReg 2006-07-01
24 schema:description The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N52606bcb9b31426b82f83677974eb3a0
29 Nf9bc27fb88a64869a187c27239502403
30 sg:journal.1049385
31 schema:name Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter
32 schema:pagination 181-200
33 schema:productId N28ff11b1df714ab685d871e37b870755
34 N444a2f09f4d94221a2028783eccccc1b
35 N792ff3823ee745b2acfa5a1c05b58a28
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046920612
37 https://doi.org/10.1007/s10546-005-9035-3
38 schema:sdDatePublished 2019-04-11T12:41
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nce44ce32581943b49213e187042b29d8
41 schema:url http://link.springer.com/10.1007%2Fs10546-005-9035-3
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N26a9f645f0b94366aec921fe913b2bc5 rdf:first sg:person.014665055545.37
46 rdf:rest rdf:nil
47 N28ff11b1df714ab685d871e37b870755 schema:name readcube_id
48 schema:value df834a0db612d673b94a0beb415f5d2a0be863e1b68f6f5ddcbfc95c06fc20c5
49 rdf:type schema:PropertyValue
50 N444a2f09f4d94221a2028783eccccc1b schema:name dimensions_id
51 schema:value pub.1046920612
52 rdf:type schema:PropertyValue
53 N52606bcb9b31426b82f83677974eb3a0 schema:volumeNumber 120
54 rdf:type schema:PublicationVolume
55 N792ff3823ee745b2acfa5a1c05b58a28 schema:name doi
56 schema:value 10.1007/s10546-005-9035-3
57 rdf:type schema:PropertyValue
58 Nce44ce32581943b49213e187042b29d8 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Ne1b45d937efb48f3bb83f68499b76225 rdf:first sg:person.012661012643.76
61 rdf:rest N26a9f645f0b94366aec921fe913b2bc5
62 Nf9bc27fb88a64869a187c27239502403 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
68 schema:name Artificial Intelligence and Image Processing
69 rdf:type schema:DefinedTerm
70 sg:journal.1049385 schema:issn 0006-8314
71 1573-1472
72 schema:name Boundary-Layer Meteorology
73 rdf:type schema:Periodical
74 sg:person.012661012643.76 schema:affiliation https://www.grid.ac/institutes/grid.450268.d
75 schema:familyName Hennemuth
76 schema:givenName Barbara
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661012643.76
78 rdf:type schema:Person
79 sg:person.014665055545.37 schema:affiliation https://www.grid.ac/institutes/grid.450268.d
80 schema:familyName Lammert
81 schema:givenName Andrea
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665055545.37
83 rdf:type schema:Person
84 sg:pub.10.1007/978-94-009-3027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016702098
85 https://doi.org/10.1007/978-94-009-3027-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf00122760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000170108
88 https://doi.org/10.1007/bf00122760
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf00713744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012522949
91 https://doi.org/10.1007/bf00713744
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02430331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036188361
94 https://doi.org/10.1007/bf02430331
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10546-004-1671-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043334096
97 https://doi.org/10.1007/s10546-004-1671-5
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10546-005-9020-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043247197
100 https://doi.org/10.1007/s10546-005-9020-x
101 rdf:type schema:CreativeWork
102 sg:pub.10.1023/a:1000258318944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034668802
103 https://doi.org/10.1023/a:1000258318944
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1018722923349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007023246
106 https://doi.org/10.1023/a:1018722923349
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1018798928158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042365467
109 https://doi.org/10.1023/a:1018798928158
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1018956525605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033786057
112 https://doi.org/10.1023/a:1018956525605
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s1352-2310(99)00349-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021952232
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1029/2002jd002748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035631225
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1175/1520-0426(2000)017<1455:aomfda>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047599009
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1175/1520-0450(1998)037<0255:eotezd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051097716
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000509571
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1175/bams-84-2-217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037919768
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1364/ao.37.003825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065113307
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1364/ao.37.003845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065113308
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.450268.d schema:alternateName Max Planck Institute for Meteorology
131 schema:name Max-Planck-Institute for Meteorology, Bundesstrasse 53, D-20146, Hamburg, Germany
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...