Wireless induction coils embedded in diamond for power transfer in medical implants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-26

AUTHORS

Md. Kabir Uddin Sikder, James Fallon, Mohit N. Shivdasani, Kumaravelu Ganesan, Peter Seligman, David J. Garrett

ABSTRACT

Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device. More... »

PAGES

79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10544-017-0220-1

DOI

http://dx.doi.org/10.1007/s10544-017-0220-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091355157

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28844084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diamond", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Wiring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Platinum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostheses and Implants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wireless Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Jahangirnagar University, Savar, 1342, Dhaka, Bangladesh", 
          "id": "http://www.grid.ac/institutes/grid.411808.4", 
          "name": [
            "Department of Medical Bionics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia", 
            "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia", 
            "Department of Physics, Jahangirnagar University, Savar, 1342, Dhaka, Bangladesh"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sikder", 
        "givenName": "Md. Kabir Uddin", 
        "id": "sg:person.0776326524.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776326524.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Otolaryngology, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Medical Bionics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia", 
            "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia", 
            "Department of Otolaryngology, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fallon", 
        "givenName": "James", 
        "id": "sg:person.0766001705.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766001705.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.431365.6", 
          "name": [
            "Department of Medical Bionics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia", 
            "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shivdasani", 
        "givenName": "Mohit N.", 
        "id": "sg:person.0757513670.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757513670.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Physics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganesan", 
        "givenName": "Kumaravelu", 
        "id": "sg:person.0604603761.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604603761.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.431365.6", 
          "name": [
            "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seligman", 
        "givenName": "Peter", 
        "id": "sg:person.01320347105.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320347105.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia", 
            "Department of Physics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrett", 
        "givenName": "David J.", 
        "id": "sg:person.01330210061.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330210061.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.3536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003531737", 
          "https://doi.org/10.1038/nmeth.3536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047200047", 
          "https://doi.org/10.1007/bf02670657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-015-9952-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020023370", 
          "https://doi.org/10.1007/s10544-015-9952-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02446195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032833289", 
          "https://doi.org/10.1007/bf02446195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020537951", 
          "https://doi.org/10.1038/nbt.3428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021545947", 
          "https://doi.org/10.1038/nature01321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02457921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004276625", 
          "https://doi.org/10.1007/bf02457921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00562998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036565631", 
          "https://doi.org/10.1007/bf00562998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-26", 
    "datePublishedReg": "2017-08-26", 
    "description": "Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10\u00a0mW of power up to a distance of 6\u00a0mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10544-017-0220-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7878239", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3563812", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7874922", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021020", 
        "issn": [
          "1387-2176", 
          "1572-8781"
        ], 
        "name": "Biomedical Microdevices", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "medical implants", 
      "power transfer efficiency", 
      "active braze alloys", 
      "oxygen plasma treatment", 
      "lithographical patterning", 
      "higher impedance values", 
      "wireless power", 
      "mW of power", 
      "lower micron", 
      "braze alloy", 
      "hermetic sealing", 
      "coil fabrication", 
      "diamond substrates", 
      "nanometer thickness", 
      "coil surface", 
      "power transfer", 
      "data transfer", 
      "induction coil", 
      "evaporated metals", 
      "metal loop", 
      "plasma treatment", 
      "impedance values", 
      "quality factor", 
      "neural recordings", 
      "transfer efficiency", 
      "coil", 
      "art technology", 
      "neuromuscular stimulation device", 
      "encapsulation", 
      "present work", 
      "diamond", 
      "fabrication", 
      "stimulation device", 
      "miniaturization", 
      "novel technique", 
      "surface", 
      "alloy", 
      "research area", 
      "implants", 
      "power", 
      "devices", 
      "mW", 
      "manufacture", 
      "microcoils", 
      "thickness", 
      "sealing", 
      "layer", 
      "patterning", 
      "substrate", 
      "transfer", 
      "technology", 
      "metals", 
      "efficiency", 
      "microns", 
      "further layer", 
      "perpendicular", 
      "trench", 
      "feasibility", 
      "current state", 
      "loop", 
      "potential quality", 
      "technique", 
      "substitute", 
      "method", 
      "work", 
      "high cross section", 
      "test", 
      "improvement", 
      "results", 
      "parallel", 
      "distance", 
      "values", 
      "sections", 
      "area", 
      "quality", 
      "growth", 
      "lines", 
      "state", 
      "recordings", 
      "efforts", 
      "factors", 
      "average", 
      "treatment"
    ], 
    "name": "Wireless induction coils embedded in diamond for power transfer in medical implants", 
    "pagination": "79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091355157"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10544-017-0220-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28844084"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10544-017-0220-1", 
      "https://app.dimensions.ai/details/publication/pub.1091355157"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10544-017-0220-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10544-017-0220-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10544-017-0220-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10544-017-0220-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10544-017-0220-1'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      22 PREDICATES      124 URIs      107 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10544-017-0220-1 schema:about N1cf2f81a23b94abaa89b6e46504caf93
2 N3e63927eeee546a78cfae9076a8a5d8a
3 N5a3f87e703d34eeaa66423ab56803d4c
4 N659cd3e5d05f4ed3a793d6e855d30ba3
5 N669d5ee18ffc47ea929fd302d5a0eb1a
6 N91cecaa9a1044048aa6ddb9488b5b08f
7 anzsrc-for:09
8 anzsrc-for:0903
9 anzsrc-for:0912
10 schema:author N7e6b470fbbdd4bb4aba60e6f8e4ceeb7
11 schema:citation sg:pub.10.1007/bf00562998
12 sg:pub.10.1007/bf02446195
13 sg:pub.10.1007/bf02457921
14 sg:pub.10.1007/bf02670657
15 sg:pub.10.1007/s10544-015-9952-y
16 sg:pub.10.1038/nature01321
17 sg:pub.10.1038/nbt.3428
18 sg:pub.10.1038/nmeth.3536
19 schema:datePublished 2017-08-26
20 schema:datePublishedReg 2017-08-26
21 schema:description Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nc543f98be388419baa6667a2d7da2a76
26 Ncb9b403b98ff4aef838ee9d5ffbda6a1
27 sg:journal.1021020
28 schema:keywords active braze alloys
29 alloy
30 area
31 art technology
32 average
33 braze alloy
34 coil
35 coil fabrication
36 coil surface
37 current state
38 data transfer
39 devices
40 diamond
41 diamond substrates
42 distance
43 efficiency
44 efforts
45 encapsulation
46 evaporated metals
47 fabrication
48 factors
49 feasibility
50 further layer
51 growth
52 hermetic sealing
53 high cross section
54 higher impedance values
55 impedance values
56 implants
57 improvement
58 induction coil
59 layer
60 lines
61 lithographical patterning
62 loop
63 lower micron
64 mW
65 mW of power
66 manufacture
67 medical implants
68 metal loop
69 metals
70 method
71 microcoils
72 microns
73 miniaturization
74 nanometer thickness
75 neural recordings
76 neuromuscular stimulation device
77 novel technique
78 oxygen plasma treatment
79 parallel
80 patterning
81 perpendicular
82 plasma treatment
83 potential quality
84 power
85 power transfer
86 power transfer efficiency
87 present work
88 quality
89 quality factor
90 recordings
91 research area
92 results
93 sealing
94 sections
95 state
96 stimulation device
97 substitute
98 substrate
99 surface
100 technique
101 technology
102 test
103 thickness
104 transfer
105 transfer efficiency
106 treatment
107 trench
108 values
109 wireless power
110 work
111 schema:name Wireless induction coils embedded in diamond for power transfer in medical implants
112 schema:pagination 79
113 schema:productId N3873a50bfb074e7392f7a9dd217cb652
114 N45599f6454a347efa3c14d1736f74bb6
115 Nc9d79de082384470b88127a54c4ffe0f
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091355157
117 https://doi.org/10.1007/s10544-017-0220-1
118 schema:sdDatePublished 2022-05-20T07:33
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N038dd931a6314cefab487900ea5c640c
121 schema:url https://doi.org/10.1007/s10544-017-0220-1
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N038dd931a6314cefab487900ea5c640c schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N140143d1567141968422a4c37bea0d8b rdf:first sg:person.01320347105.58
128 rdf:rest N769bd523130541a5a9c45fb05d8af77d
129 N1cf2f81a23b94abaa89b6e46504caf93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Electricity
131 rdf:type schema:DefinedTerm
132 N204178f399004645b6b676a9f5545d9c rdf:first sg:person.0604603761.90
133 rdf:rest N140143d1567141968422a4c37bea0d8b
134 N2716caa9b7644268b0087d4402688e9e rdf:first sg:person.0766001705.30
135 rdf:rest Ne7f149d524ed49bdb7853471443f1ddd
136 N3873a50bfb074e7392f7a9dd217cb652 schema:name dimensions_id
137 schema:value pub.1091355157
138 rdf:type schema:PropertyValue
139 N3e63927eeee546a78cfae9076a8a5d8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Electric Wiring
141 rdf:type schema:DefinedTerm
142 N45599f6454a347efa3c14d1736f74bb6 schema:name doi
143 schema:value 10.1007/s10544-017-0220-1
144 rdf:type schema:PropertyValue
145 N5a3f87e703d34eeaa66423ab56803d4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Prostheses and Implants
147 rdf:type schema:DefinedTerm
148 N659cd3e5d05f4ed3a793d6e855d30ba3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Wireless Technology
150 rdf:type schema:DefinedTerm
151 N669d5ee18ffc47ea929fd302d5a0eb1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Diamond
153 rdf:type schema:DefinedTerm
154 N769bd523130541a5a9c45fb05d8af77d rdf:first sg:person.01330210061.64
155 rdf:rest rdf:nil
156 N7e6b470fbbdd4bb4aba60e6f8e4ceeb7 rdf:first sg:person.0776326524.84
157 rdf:rest N2716caa9b7644268b0087d4402688e9e
158 N91cecaa9a1044048aa6ddb9488b5b08f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Platinum
160 rdf:type schema:DefinedTerm
161 Nc543f98be388419baa6667a2d7da2a76 schema:issueNumber 4
162 rdf:type schema:PublicationIssue
163 Nc9d79de082384470b88127a54c4ffe0f schema:name pubmed_id
164 schema:value 28844084
165 rdf:type schema:PropertyValue
166 Ncb9b403b98ff4aef838ee9d5ffbda6a1 schema:volumeNumber 19
167 rdf:type schema:PublicationVolume
168 Ne7f149d524ed49bdb7853471443f1ddd rdf:first sg:person.0757513670.30
169 rdf:rest N204178f399004645b6b676a9f5545d9c
170 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
171 schema:name Engineering
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biomedical Engineering
175 rdf:type schema:DefinedTerm
176 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
177 schema:name Materials Engineering
178 rdf:type schema:DefinedTerm
179 sg:grant.3563812 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-017-0220-1
180 rdf:type schema:MonetaryGrant
181 sg:grant.7874922 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-017-0220-1
182 rdf:type schema:MonetaryGrant
183 sg:grant.7878239 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-017-0220-1
184 rdf:type schema:MonetaryGrant
185 sg:journal.1021020 schema:issn 1387-2176
186 1572-8781
187 schema:name Biomedical Microdevices
188 schema:publisher Springer Nature
189 rdf:type schema:Periodical
190 sg:person.01320347105.58 schema:affiliation grid-institutes:grid.431365.6
191 schema:familyName Seligman
192 schema:givenName Peter
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320347105.58
194 rdf:type schema:Person
195 sg:person.01330210061.64 schema:affiliation grid-institutes:grid.1008.9
196 schema:familyName Garrett
197 schema:givenName David J.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330210061.64
199 rdf:type schema:Person
200 sg:person.0604603761.90 schema:affiliation grid-institutes:grid.1008.9
201 schema:familyName Ganesan
202 schema:givenName Kumaravelu
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604603761.90
204 rdf:type schema:Person
205 sg:person.0757513670.30 schema:affiliation grid-institutes:grid.431365.6
206 schema:familyName Shivdasani
207 schema:givenName Mohit N.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757513670.30
209 rdf:type schema:Person
210 sg:person.0766001705.30 schema:affiliation grid-institutes:grid.1008.9
211 schema:familyName Fallon
212 schema:givenName James
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766001705.30
214 rdf:type schema:Person
215 sg:person.0776326524.84 schema:affiliation grid-institutes:grid.411808.4
216 schema:familyName Sikder
217 schema:givenName Md. Kabir Uddin
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776326524.84
219 rdf:type schema:Person
220 sg:pub.10.1007/bf00562998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036565631
221 https://doi.org/10.1007/bf00562998
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/bf02446195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032833289
224 https://doi.org/10.1007/bf02446195
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/bf02457921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004276625
227 https://doi.org/10.1007/bf02457921
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/bf02670657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047200047
230 https://doi.org/10.1007/bf02670657
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s10544-015-9952-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020023370
233 https://doi.org/10.1007/s10544-015-9952-y
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nature01321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021545947
236 https://doi.org/10.1038/nature01321
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nbt.3428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020537951
239 https://doi.org/10.1038/nbt.3428
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nmeth.3536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003531737
242 https://doi.org/10.1038/nmeth.3536
243 rdf:type schema:CreativeWork
244 grid-institutes:grid.1008.9 schema:alternateName Department of Otolaryngology, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
245 Department of Physics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
246 schema:name Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia
247 Department of Medical Bionics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
248 Department of Otolaryngology, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
249 Department of Physics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
250 rdf:type schema:Organization
251 grid-institutes:grid.411808.4 schema:alternateName Department of Physics, Jahangirnagar University, Savar, 1342, Dhaka, Bangladesh
252 schema:name Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia
253 Department of Medical Bionics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
254 Department of Physics, Jahangirnagar University, Savar, 1342, Dhaka, Bangladesh
255 rdf:type schema:Organization
256 grid-institutes:grid.431365.6 schema:alternateName Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia
257 schema:name Bionics Institute, 384 Albert St, 3002, East Melbourne, VIC, Australia
258 Department of Medical Bionics, The University of Melbourne, Parkville, 3010, Melbourne, VIC, Australia
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...