Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05-31

AUTHORS

Nithya Murugesan, Tapobrata Panda, Sarit K. Das

ABSTRACT

Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role. More... »

PAGES

53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10544-016-0077-8

DOI

http://dx.doi.org/10.1007/s10544-016-0077-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033096471

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27246690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotaxis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dimethylpolysiloxanes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lab-On-A-Chip Devices", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Viability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microfluidics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taxis Response", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murugesan", 
        "givenName": "Nithya", 
        "id": "sg:person.01202013441.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202013441.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panda", 
        "givenName": "Tapobrata", 
        "id": "sg:person.01002553400.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002553400.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Sarit K.", 
        "id": "sg:person.015472117147.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015472117147.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep19616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041282062", 
          "https://doi.org/10.1038/srep19616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045688596", 
          "https://doi.org/10.1038/nrmicro1207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-012-9728-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007870697", 
          "https://doi.org/10.1007/s10544-012-9728-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038510737", 
          "https://doi.org/10.1038/ncb1632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01498565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001331078", 
          "https://doi.org/10.1007/bf01498565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb0907-1029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018402575", 
          "https://doi.org/10.1038/ncb0907-1029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-3155-10-19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041824208", 
          "https://doi.org/10.1186/1477-3155-10-19"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-31", 
    "datePublishedReg": "2016-05-31", 
    "description": "Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5\u03b1 cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22\u00a0nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649\u00a0\u03bcg/mL) has no effect on the thermal gradient generation. The E. coli DH5\u03b1 cells have been treated with AuNPs of two different concentrations (0.649\u00a0\u03bcg/mL and 0.008\u00a0\u03bcg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5\u03b1 cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5\u03b1 cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649\u00a0\u03bcg/mL and 0.008\u00a0\u03bcg/mL) thermotaxis of the E. coli DH5\u03b1 cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5\u03b1 cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10544-016-0077-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8559348", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021020", 
        "issn": [
          "1387-2176", 
          "1572-8781"
        ], 
        "name": "Biomedical Microdevices", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "gradient generation", 
      "microfluidic device", 
      "thermal gradient", 
      "numerical simulations", 
      "low temperature range", 
      "microfluidic environment", 
      "thermal environment", 
      "polydimethylsiloxane", 
      "devices", 
      "temperature range", 
      "same response mechanism", 
      "nanoparticles", 
      "gradient", 
      "generation", 
      "particular location", 
      "simulations", 
      "different concentrations", 
      "gold nanoparticles", 
      "response mechanisms", 
      "behavior", 
      "environment", 
      "spherical gold nanoparticles", 
      "effect", 
      "collapse", 
      "presence of AuNPs", 
      "chemicals", 
      "range", 
      "location", 
      "mechanism", 
      "results", 
      "failure", 
      "presence", 
      "potential", 
      "AuNPs", 
      "concentration", 
      "absence of AuNPs", 
      "turn", 
      "reasons", 
      "migration", 
      "coli DH5\u03b1 cells", 
      "cases", 
      "cells", 
      "study", 
      "response", 
      "DH5\u03b1 cells", 
      "thermotaxis", 
      "absence", 
      "levels", 
      "bacteria", 
      "critical role", 
      "thermotaxis behavior", 
      "intervenes", 
      "role", 
      "activity", 
      "report", 
      "coli cells", 
      "cell migration", 
      "chemotaxis", 
      "membrane potential", 
      "ATP synthase activity", 
      "ATP", 
      "ATP levels", 
      "synthase activity", 
      "thermal gradient generation", 
      "static microfluidic environment", 
      "PDMS-agarose", 
      "case of thermotaxis", 
      "better thermotaxis", 
      "spherical AuNPs intervenes", 
      "AuNPs intervenes", 
      "themotaxis", 
      "thermotaxis response mechanism", 
      "type ATP synthase activity"
    ], 
    "name": "Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device", 
    "pagination": "53", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033096471"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10544-016-0077-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27246690"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10544-016-0077-8", 
      "https://app.dimensions.ai/details/publication/pub.1033096471"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10544-016-0077-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10544-016-0077-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10544-016-0077-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10544-016-0077-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10544-016-0077-8'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      22 PREDICATES      116 URIs      101 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10544-016-0077-8 schema:about N33b1b52d3f9342289a651050f180f804
2 N3c382d80a7f7466f9df695bf3ff64662
3 N4ca32c2782c5431c900a5201f02d923e
4 N5ec48bdec30448c58d53d4cd092f8b89
5 N65f755b3c18e482fbed97bfc7c717668
6 N83349cf1c23c4058bf0a6f712dc35222
7 Na9a7344ba78e4cfdaed565015ce6229f
8 Nb1a63547223a4d849d099ba6a7373a33
9 Nbcc74e3cbab84339915eb49cd9251bd2
10 Nedfe39174a9a4729bba70b7d50c8ecd2
11 anzsrc-for:09
12 anzsrc-for:0915
13 schema:author Nf0781ab29e42463db2db4581173dd0bb
14 schema:citation sg:pub.10.1007/bf01498565
15 sg:pub.10.1007/s10544-012-9728-6
16 sg:pub.10.1038/ncb0907-1029
17 sg:pub.10.1038/ncb1632
18 sg:pub.10.1038/nrmicro1207
19 sg:pub.10.1038/srep19616
20 sg:pub.10.1186/1477-3155-10-19
21 schema:datePublished 2016-05-31
22 schema:datePublishedReg 2016-05-31
23 schema:description Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N255f7ed2b79e48089257aa8e21beea49
28 N64134d166ec64ae9be61906e5777f8f6
29 sg:journal.1021020
30 schema:keywords ATP
31 ATP levels
32 ATP synthase activity
33 AuNPs
34 AuNPs intervenes
35 DH5α cells
36 PDMS-agarose
37 absence
38 absence of AuNPs
39 activity
40 bacteria
41 behavior
42 better thermotaxis
43 case of thermotaxis
44 cases
45 cell migration
46 cells
47 chemicals
48 chemotaxis
49 coli DH5α cells
50 coli cells
51 collapse
52 concentration
53 critical role
54 devices
55 different concentrations
56 effect
57 environment
58 failure
59 generation
60 gold nanoparticles
61 gradient
62 gradient generation
63 intervenes
64 levels
65 location
66 low temperature range
67 mechanism
68 membrane potential
69 microfluidic device
70 microfluidic environment
71 migration
72 nanoparticles
73 numerical simulations
74 particular location
75 polydimethylsiloxane
76 potential
77 presence
78 presence of AuNPs
79 range
80 reasons
81 report
82 response
83 response mechanisms
84 results
85 role
86 same response mechanism
87 simulations
88 spherical AuNPs intervenes
89 spherical gold nanoparticles
90 static microfluidic environment
91 study
92 synthase activity
93 temperature range
94 themotaxis
95 thermal environment
96 thermal gradient
97 thermal gradient generation
98 thermotaxis
99 thermotaxis behavior
100 thermotaxis response mechanism
101 turn
102 type ATP synthase activity
103 schema:name Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device
104 schema:pagination 53
105 schema:productId N279c8f39ce974a0cb3a5d1fb920352c9
106 N9eb5aaea12cc4b71b7c5bc7120113c66
107 Nb6480d13803446c0b619a610df2c0732
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033096471
109 https://doi.org/10.1007/s10544-016-0077-8
110 schema:sdDatePublished 2021-12-01T19:37
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N6821a69a8849450b9674b4c1d37df2f0
113 schema:url https://doi.org/10.1007/s10544-016-0077-8
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0b4fe537af69405f832b7b0a7a3cb06b rdf:first sg:person.015472117147.27
118 rdf:rest rdf:nil
119 N255f7ed2b79e48089257aa8e21beea49 schema:issueNumber 4
120 rdf:type schema:PublicationIssue
121 N279c8f39ce974a0cb3a5d1fb920352c9 schema:name pubmed_id
122 schema:value 27246690
123 rdf:type schema:PropertyValue
124 N33b1b52d3f9342289a651050f180f804 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Chemotaxis
126 rdf:type schema:DefinedTerm
127 N3c382d80a7f7466f9df695bf3ff64662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Microbial Viability
129 rdf:type schema:DefinedTerm
130 N4ca32c2782c5431c900a5201f02d923e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Reproducibility of Results
132 rdf:type schema:DefinedTerm
133 N5ec48bdec30448c58d53d4cd092f8b89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Taxis Response
135 rdf:type schema:DefinedTerm
136 N64134d166ec64ae9be61906e5777f8f6 schema:volumeNumber 18
137 rdf:type schema:PublicationVolume
138 N65f755b3c18e482fbed97bfc7c717668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Microfluidics
140 rdf:type schema:DefinedTerm
141 N6821a69a8849450b9674b4c1d37df2f0 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N83349cf1c23c4058bf0a6f712dc35222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Lab-On-A-Chip Devices
145 rdf:type schema:DefinedTerm
146 N9eb5aaea12cc4b71b7c5bc7120113c66 schema:name doi
147 schema:value 10.1007/s10544-016-0077-8
148 rdf:type schema:PropertyValue
149 Na9a7344ba78e4cfdaed565015ce6229f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Dimethylpolysiloxanes
151 rdf:type schema:DefinedTerm
152 Nb1a63547223a4d849d099ba6a7373a33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Escherichia coli
154 rdf:type schema:DefinedTerm
155 Nb6480d13803446c0b619a610df2c0732 schema:name dimensions_id
156 schema:value pub.1033096471
157 rdf:type schema:PropertyValue
158 Nbcc74e3cbab84339915eb49cd9251bd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Gold
160 rdf:type schema:DefinedTerm
161 Ncbdcf7691373436b8a724ea7debd7307 rdf:first sg:person.01002553400.17
162 rdf:rest N0b4fe537af69405f832b7b0a7a3cb06b
163 Nedfe39174a9a4729bba70b7d50c8ecd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Metal Nanoparticles
165 rdf:type schema:DefinedTerm
166 Nf0781ab29e42463db2db4581173dd0bb rdf:first sg:person.01202013441.50
167 rdf:rest Ncbdcf7691373436b8a724ea7debd7307
168 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
169 schema:name Engineering
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
172 schema:name Interdisciplinary Engineering
173 rdf:type schema:DefinedTerm
174 sg:grant.8559348 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-016-0077-8
175 rdf:type schema:MonetaryGrant
176 sg:journal.1021020 schema:issn 1387-2176
177 1572-8781
178 schema:name Biomedical Microdevices
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01002553400.17 schema:affiliation grid-institutes:grid.417969.4
182 schema:familyName Panda
183 schema:givenName Tapobrata
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002553400.17
185 rdf:type schema:Person
186 sg:person.01202013441.50 schema:affiliation grid-institutes:grid.417969.4
187 schema:familyName Murugesan
188 schema:givenName Nithya
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202013441.50
190 rdf:type schema:Person
191 sg:person.015472117147.27 schema:affiliation grid-institutes:grid.417969.4
192 schema:familyName Das
193 schema:givenName Sarit K.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015472117147.27
195 rdf:type schema:Person
196 sg:pub.10.1007/bf01498565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001331078
197 https://doi.org/10.1007/bf01498565
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s10544-012-9728-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007870697
200 https://doi.org/10.1007/s10544-012-9728-6
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ncb0907-1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018402575
203 https://doi.org/10.1038/ncb0907-1029
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ncb1632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038510737
206 https://doi.org/10.1038/ncb1632
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrmicro1207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045688596
209 https://doi.org/10.1038/nrmicro1207
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/srep19616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041282062
212 https://doi.org/10.1038/srep19616
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1477-3155-10-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041824208
215 https://doi.org/10.1186/1477-3155-10-19
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.417969.4 schema:alternateName Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
218 Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
219 schema:name Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
220 Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai, India
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...