Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

Gyudo Lee, Insu Park, Kiwoon Kwon, Taeyun Kwon, Jongbum Seo, Woo-Jin Chang, Hakhyun Nam, Geun Sig Cha, Moon Hee Choi, Dae Sung Yoon, Sang Woo Lee

ABSTRACT

The concentration of C-reactive protein (CRP), a classic acute phase plasma protein, increases rapidly in response to tissue infection or inflammation, especially in cases of cardiovascular disease and stroke. Thus, highly sensitive monitoring of the CRP concentration plays a pivotal role in detecting these diseases. Many researchers have studied methods for the detection of CRP concentrations such as optical, mechanical, and electrochemical techniques inside microfluidic devices. While significant progress has been made towards improving the resolution and sensitivity of detection, only a few studies have systematically analyzed the CRP concentration using both numerical and experimental approaches. Specifically, systematic analyses of the electrochemical detection of high-sensitivity CRP (hsCRP) using an enzyme-linked immunosorbant assay (ELISA) inside a microfluidic device have never been conducted. In this paper, we systematically analyzed the electrochemical detection of CRP modified through the attachment of an alkaline phosphatase (ALP-labeled CRP) using ELISA inside a chip. For this analysis, we developed a model based on antigen-antibody binding kinetics theory for the numerical quantification of the CRP concentration. We also experimentally measured the current value corresponding to the ALP-labeled CRP concentration inside the microfluidic chip. The measured value closely matched the calculated value obtained by numerical simulation using the developed model. Through this comparison, we validated the numerical simulation methods, and the calculated and measured values. Lastly, we examined the effects of various microfluidic parameters on electrochemical detection of the ALP-labeled CRP concentration using numerical simulations. The results of these simulations provide insight into the microfluidic electrochemical reactions used for protein detection. Furthermore, the results described in this study should be useful for the design and optimization of electrochemical immunoassay chips for the detection of target proteins. More... »

PAGES

375-384

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10544-011-9614-7

DOI

http://dx.doi.org/10.1007/s10544-011-9614-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028416815

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22143877


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alkaline Phosphatase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aminophenols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aniline Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "C-Reactive Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrochemical Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme-Linked Immunosorbent Assay", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoassay", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Limit of Detection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microfluidic Analytical Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organophosphorus Compounds", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Gyudo", 
        "id": "sg:person.01050506147.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050506147.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Insu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dongguk University", 
          "id": "https://www.grid.ac/institutes/grid.255168.d", 
          "name": [
            "Department of Mathematics, Dongguk University, 100-715, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Kiwoon", 
        "id": "sg:person.01073400653.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073400653.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Taeyun", 
        "id": "sg:person.01146421715.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146421715.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Jongbum", 
        "id": "sg:person.0652662336.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652662336.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Milwaukee", 
          "id": "https://www.grid.ac/institutes/grid.267468.9", 
          "name": [
            "Mechanical Engineering Department and School of Freshwater Sciences Engineering & Mathematics Sciences, University of Wisconsin-Milwaukee, 53211, Milwaukee, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Woo-Jin", 
        "id": "sg:person.01233213336.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233213336.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kwangwoon University", 
          "id": "https://www.grid.ac/institutes/grid.411202.4", 
          "name": [
            "Department of Chemistry, Kwangwoon University, 139-701, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nam", 
        "givenName": "Hakhyun", 
        "id": "sg:person.0762327244.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762327244.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kwangwoon University", 
          "id": "https://www.grid.ac/institutes/grid.411202.4", 
          "name": [
            "Department of Chemistry, Kwangwoon University, 139-701, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cha", 
        "givenName": "Geun Sig", 
        "id": "sg:person.01372171053.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372171053.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "i-SENS, Inc., 220-801, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Moon Hee", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Dae Sung", 
        "id": "sg:person.01146411524.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146411524.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Woo", 
        "id": "sg:person.0741771765.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741771765.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ange.200805743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000261336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cccn.2005.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003555623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003565081", 
          "https://doi.org/10.1038/nature05064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003565081", 
          "https://doi.org/10.1038/nature05064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009894731", 
          "https://doi.org/10.1038/nature05062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009894731", 
          "https://doi.org/10.1038/nature05062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009894731", 
          "https://doi.org/10.1038/nature05062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2009.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012948706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000093381.57779.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016355998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2006.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020672620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.200804358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024604989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2714029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026565903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2006.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027865173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-005-1587-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035098947", 
          "https://doi.org/10.1007/s10544-005-1587-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-005-1587-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035098947", 
          "https://doi.org/10.1007/s10544-005-1587-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-005-1587-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035098947", 
          "https://doi.org/10.1007/s10544-005-1587-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b702408h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035152731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b702408h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035152731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.200804560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040389364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.200804560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040389364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-2126(99)80023-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b818872f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051425019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(84)90152-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052629681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9010827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9010827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac950650z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac950650z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2784941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057866856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2909980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057881328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.15.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.15.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078362111", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083277457", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "The concentration of C-reactive protein (CRP), a classic acute phase plasma protein, increases rapidly in response to tissue infection or inflammation, especially in cases of cardiovascular disease and stroke. Thus, highly sensitive monitoring of the CRP concentration plays a pivotal role in detecting these diseases. Many researchers have studied methods for the detection of CRP concentrations such as optical, mechanical, and electrochemical techniques inside microfluidic devices. While significant progress has been made towards improving the resolution and sensitivity of detection, only a few studies have systematically analyzed the CRP concentration using both numerical and experimental approaches. Specifically, systematic analyses of the electrochemical detection of high-sensitivity CRP (hsCRP) using an enzyme-linked immunosorbant assay (ELISA) inside a microfluidic device have never been conducted. In this paper, we systematically analyzed the electrochemical detection of CRP modified through the attachment of an alkaline phosphatase (ALP-labeled CRP) using ELISA inside a chip. For this analysis, we developed a model based on antigen-antibody binding kinetics theory for the numerical quantification of the CRP concentration. We also experimentally measured the current value corresponding to the ALP-labeled CRP concentration inside the microfluidic chip. The measured value closely matched the calculated value obtained by numerical simulation using the developed model. Through this comparison, we validated the numerical simulation methods, and the calculated and measured values. Lastly, we examined the effects of various microfluidic parameters on electrochemical detection of the ALP-labeled CRP concentration using numerical simulations. The results of these simulations provide insight into the microfluidic electrochemical reactions used for protein detection. Furthermore, the results described in this study should be useful for the design and optimization of electrochemical immunoassay chips for the detection of target proteins.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10544-011-9614-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7446018", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7449933", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7449621", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7457328", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021020", 
        "issn": [
          "1387-2176", 
          "1572-8781"
        ], 
        "name": "Biomedical Microdevices", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies", 
    "pagination": "375-384", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "875f0577082fdc63d6a76ae6240581eb3d838492033acc519f8795ea983229db"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22143877"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100887374"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10544-011-9614-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028416815"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10544-011-9614-7", 
      "https://app.dimensions.ai/details/publication/pub.1028416815"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10544-011-9614-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10544-011-9614-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10544-011-9614-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10544-011-9614-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10544-011-9614-7'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      64 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10544-011-9614-7 schema:about N1233e44ca2bb4a0aafea203304ab173f
2 N1579ab97d7d14de3aa4c2c0b426bf85f
3 N615b64b8d81e43c8b7ae8286696a31f7
4 N7e13f164e4d042d9a90d875f4deeeecb
5 N8bc18980c65f445eb487a82687a06a90
6 Nb13d1451db384050ae5972100be614e6
7 Nca0140cf77364e5b8c9dec257254cf30
8 Nce3b07ece894413a93fa2e9a7e1719a7
9 Ncfc312e42b1e47fc8e900a98ff9c081f
10 Nd8a50d4e7527472bb15f85e380d6b40b
11 Nf52644ddf13341a1b3979a089ef07958
12 Nfcc8db88072f43818d576e66d2245909
13 anzsrc-for:03
14 anzsrc-for:0301
15 schema:author Nc60924052f364ccba8d5f038d61133b3
16 schema:citation sg:pub.10.1007/s10544-005-1587-y
17 sg:pub.10.1038/nature05062
18 sg:pub.10.1038/nature05064
19 https://app.dimensions.ai/details/publication/pub.1078362111
20 https://app.dimensions.ai/details/publication/pub.1083277457
21 https://doi.org/10.1002/ange.200805743
22 https://doi.org/10.1002/elan.200804358
23 https://doi.org/10.1002/elan.200804560
24 https://doi.org/10.1016/0003-2697(84)90152-0
25 https://doi.org/10.1016/j.bios.2006.06.017
26 https://doi.org/10.1016/j.bios.2006.06.021
27 https://doi.org/10.1016/j.cccn.2005.01.026
28 https://doi.org/10.1016/j.talanta.2009.09.040
29 https://doi.org/10.1016/s0969-2126(99)80023-9
30 https://doi.org/10.1021/ac9010827
31 https://doi.org/10.1021/ac950650z
32 https://doi.org/10.1039/b702408h
33 https://doi.org/10.1039/b818872f
34 https://doi.org/10.1063/1.2784941
35 https://doi.org/10.1063/1.2909980
36 https://doi.org/10.1103/revmodphys.15.1
37 https://doi.org/10.1117/1.2714029
38 https://doi.org/10.1161/01.cir.0000093381.57779.67
39 schema:datePublished 2012-04
40 schema:datePublishedReg 2012-04-01
41 schema:description The concentration of C-reactive protein (CRP), a classic acute phase plasma protein, increases rapidly in response to tissue infection or inflammation, especially in cases of cardiovascular disease and stroke. Thus, highly sensitive monitoring of the CRP concentration plays a pivotal role in detecting these diseases. Many researchers have studied methods for the detection of CRP concentrations such as optical, mechanical, and electrochemical techniques inside microfluidic devices. While significant progress has been made towards improving the resolution and sensitivity of detection, only a few studies have systematically analyzed the CRP concentration using both numerical and experimental approaches. Specifically, systematic analyses of the electrochemical detection of high-sensitivity CRP (hsCRP) using an enzyme-linked immunosorbant assay (ELISA) inside a microfluidic device have never been conducted. In this paper, we systematically analyzed the electrochemical detection of CRP modified through the attachment of an alkaline phosphatase (ALP-labeled CRP) using ELISA inside a chip. For this analysis, we developed a model based on antigen-antibody binding kinetics theory for the numerical quantification of the CRP concentration. We also experimentally measured the current value corresponding to the ALP-labeled CRP concentration inside the microfluidic chip. The measured value closely matched the calculated value obtained by numerical simulation using the developed model. Through this comparison, we validated the numerical simulation methods, and the calculated and measured values. Lastly, we examined the effects of various microfluidic parameters on electrochemical detection of the ALP-labeled CRP concentration using numerical simulations. The results of these simulations provide insight into the microfluidic electrochemical reactions used for protein detection. Furthermore, the results described in this study should be useful for the design and optimization of electrochemical immunoassay chips for the detection of target proteins.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf Nd37bce699a044f9fa5c356701d6764f3
46 Nf0e3f0b90e0b44eea4d8e6357591a429
47 sg:journal.1021020
48 schema:name Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies
49 schema:pagination 375-384
50 schema:productId N26b5134fe19a41fbb5db4bd603a20685
51 N4cd2919f26e946eab52213ebf040a6f4
52 N793b45dae18d470989bbf4a897410125
53 N8b47789c08bc407caa302f1f569b4e0c
54 Nf6cf61636cab43aa8281f398dcd0d135
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028416815
56 https://doi.org/10.1007/s10544-011-9614-7
57 schema:sdDatePublished 2019-04-10T14:53
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N65dcd2c5dd514c2aa69ce6eda8bc5e5c
60 schema:url http://link.springer.com/10.1007/s10544-011-9614-7
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0654c2b873cf4b0898823b95be7d6257 rdf:first sg:person.01146411524.39
65 rdf:rest Ndc083a92afb14360b9d2b22737b78c89
66 N0d363984d6114a418b62b8f587c250b5 rdf:first sg:person.01146421715.55
67 rdf:rest N626a7fb9756a4686b0d8c04d7636950a
68 N1233e44ca2bb4a0aafea203304ab173f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Aminophenols
70 rdf:type schema:DefinedTerm
71 N1579ab97d7d14de3aa4c2c0b426bf85f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Immunoassay
73 rdf:type schema:DefinedTerm
74 N26b5134fe19a41fbb5db4bd603a20685 schema:name readcube_id
75 schema:value 875f0577082fdc63d6a76ae6240581eb3d838492033acc519f8795ea983229db
76 rdf:type schema:PropertyValue
77 N2e786c91425a4a6582544dbb6804d2d5 rdf:first sg:person.01073400653.56
78 rdf:rest N0d363984d6114a418b62b8f587c250b5
79 N4cd2919f26e946eab52213ebf040a6f4 schema:name nlm_unique_id
80 schema:value 100887374
81 rdf:type schema:PropertyValue
82 N615b64b8d81e43c8b7ae8286696a31f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Limit of Detection
84 rdf:type schema:DefinedTerm
85 N626a7fb9756a4686b0d8c04d7636950a rdf:first sg:person.0652662336.22
86 rdf:rest Nc22869db64634b0b9eb19ffc6043e45f
87 N65dcd2c5dd514c2aa69ce6eda8bc5e5c schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N793b45dae18d470989bbf4a897410125 schema:name doi
90 schema:value 10.1007/s10544-011-9614-7
91 rdf:type schema:PropertyValue
92 N7e13f164e4d042d9a90d875f4deeeecb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Microfluidic Analytical Techniques
94 rdf:type schema:DefinedTerm
95 N8b47789c08bc407caa302f1f569b4e0c schema:name dimensions_id
96 schema:value pub.1028416815
97 rdf:type schema:PropertyValue
98 N8bc18980c65f445eb487a82687a06a90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Theoretical
100 rdf:type schema:DefinedTerm
101 N8dafa786656e44af9225b99c6df1f360 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
102 schema:familyName Park
103 schema:givenName Insu
104 rdf:type schema:Person
105 N8e055e6ca0cc4a8d821c0ad47e96b90d rdf:first sg:person.01372171053.76
106 rdf:rest Nd75e37a999dc46e08561e0a8db1ecb5a
107 N94d928ae69244f759c65878a68f5ccbc schema:affiliation Ndab292923a8b463fb8cf38cd39f9eddb
108 schema:familyName Choi
109 schema:givenName Moon Hee
110 rdf:type schema:Person
111 Na0455c30c8a8451b8e521dffa42f8004 rdf:first N8dafa786656e44af9225b99c6df1f360
112 rdf:rest N2e786c91425a4a6582544dbb6804d2d5
113 Na32d18c180ea42b28fbbae2c10cdb57f rdf:first sg:person.0762327244.61
114 rdf:rest N8e055e6ca0cc4a8d821c0ad47e96b90d
115 Nb13d1451db384050ae5972100be614e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Organophosphorus Compounds
117 rdf:type schema:DefinedTerm
118 Nc22869db64634b0b9eb19ffc6043e45f rdf:first sg:person.01233213336.41
119 rdf:rest Na32d18c180ea42b28fbbae2c10cdb57f
120 Nc60924052f364ccba8d5f038d61133b3 rdf:first sg:person.01050506147.84
121 rdf:rest Na0455c30c8a8451b8e521dffa42f8004
122 Nca0140cf77364e5b8c9dec257254cf30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Alkaline Phosphatase
124 rdf:type schema:DefinedTerm
125 Nce3b07ece894413a93fa2e9a7e1719a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Equipment Design
127 rdf:type schema:DefinedTerm
128 Ncfc312e42b1e47fc8e900a98ff9c081f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Electrochemical Techniques
130 rdf:type schema:DefinedTerm
131 Nd37bce699a044f9fa5c356701d6764f3 schema:issueNumber 2
132 rdf:type schema:PublicationIssue
133 Nd75e37a999dc46e08561e0a8db1ecb5a rdf:first N94d928ae69244f759c65878a68f5ccbc
134 rdf:rest N0654c2b873cf4b0898823b95be7d6257
135 Nd8a50d4e7527472bb15f85e380d6b40b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Aniline Compounds
137 rdf:type schema:DefinedTerm
138 Ndab292923a8b463fb8cf38cd39f9eddb schema:name i-SENS, Inc., 220-801, Wonju, Kangwon, Republic of Korea
139 rdf:type schema:Organization
140 Ndc083a92afb14360b9d2b22737b78c89 rdf:first sg:person.0741771765.46
141 rdf:rest rdf:nil
142 Nf0e3f0b90e0b44eea4d8e6357591a429 schema:volumeNumber 14
143 rdf:type schema:PublicationVolume
144 Nf52644ddf13341a1b3979a089ef07958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name C-Reactive Protein
146 rdf:type schema:DefinedTerm
147 Nf6cf61636cab43aa8281f398dcd0d135 schema:name pubmed_id
148 schema:value 22143877
149 rdf:type schema:PropertyValue
150 Nfcc8db88072f43818d576e66d2245909 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Enzyme-Linked Immunosorbent Assay
152 rdf:type schema:DefinedTerm
153 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
154 schema:name Chemical Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
157 schema:name Analytical Chemistry
158 rdf:type schema:DefinedTerm
159 sg:grant.7446018 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-011-9614-7
160 rdf:type schema:MonetaryGrant
161 sg:grant.7449621 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-011-9614-7
162 rdf:type schema:MonetaryGrant
163 sg:grant.7449933 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-011-9614-7
164 rdf:type schema:MonetaryGrant
165 sg:grant.7457328 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-011-9614-7
166 rdf:type schema:MonetaryGrant
167 sg:journal.1021020 schema:issn 1387-2176
168 1572-8781
169 schema:name Biomedical Microdevices
170 rdf:type schema:Periodical
171 sg:person.01050506147.84 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
172 schema:familyName Lee
173 schema:givenName Gyudo
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050506147.84
175 rdf:type schema:Person
176 sg:person.01073400653.56 schema:affiliation https://www.grid.ac/institutes/grid.255168.d
177 schema:familyName Kwon
178 schema:givenName Kiwoon
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073400653.56
180 rdf:type schema:Person
181 sg:person.01146411524.39 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
182 schema:familyName Yoon
183 schema:givenName Dae Sung
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146411524.39
185 rdf:type schema:Person
186 sg:person.01146421715.55 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
187 schema:familyName Kwon
188 schema:givenName Taeyun
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146421715.55
190 rdf:type schema:Person
191 sg:person.01233213336.41 schema:affiliation https://www.grid.ac/institutes/grid.267468.9
192 schema:familyName Chang
193 schema:givenName Woo-Jin
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233213336.41
195 rdf:type schema:Person
196 sg:person.01372171053.76 schema:affiliation https://www.grid.ac/institutes/grid.411202.4
197 schema:familyName Cha
198 schema:givenName Geun Sig
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372171053.76
200 rdf:type schema:Person
201 sg:person.0652662336.22 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
202 schema:familyName Seo
203 schema:givenName Jongbum
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652662336.22
205 rdf:type schema:Person
206 sg:person.0741771765.46 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
207 schema:familyName Lee
208 schema:givenName Sang Woo
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741771765.46
210 rdf:type schema:Person
211 sg:person.0762327244.61 schema:affiliation https://www.grid.ac/institutes/grid.411202.4
212 schema:familyName Nam
213 schema:givenName Hakhyun
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762327244.61
215 rdf:type schema:Person
216 sg:pub.10.1007/s10544-005-1587-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035098947
217 https://doi.org/10.1007/s10544-005-1587-y
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature05062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009894731
220 https://doi.org/10.1038/nature05062
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nature05064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003565081
223 https://doi.org/10.1038/nature05064
224 rdf:type schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1078362111 schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1083277457 schema:CreativeWork
227 https://doi.org/10.1002/ange.200805743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000261336
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/elan.200804358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024604989
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/elan.200804560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040389364
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/0003-2697(84)90152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052629681
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.bios.2006.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027865173
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.bios.2006.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020672620
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.cccn.2005.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003555623
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.talanta.2009.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012948706
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/s0969-2126(99)80023-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494451
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/ac9010827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071396
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/ac950650z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055072248
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1039/b702408h schema:sameAs https://app.dimensions.ai/details/publication/pub.1035152731
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1039/b818872f schema:sameAs https://app.dimensions.ai/details/publication/pub.1051425019
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1063/1.2784941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057866856
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1063/1.2909980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057881328
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1103/revmodphys.15.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837181
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1117/1.2714029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026565903
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1161/01.cir.0000093381.57779.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016355998
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
264 schema:name Department of Biomedical Engineering, Yonsei University, 220-710, Wonju, Kangwon, Republic of Korea
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.255168.d schema:alternateName Dongguk University
267 schema:name Department of Mathematics, Dongguk University, 100-715, Seoul, Republic of Korea
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.267468.9 schema:alternateName University of Wisconsin–Milwaukee
270 schema:name Mechanical Engineering Department and School of Freshwater Sciences Engineering & Mathematics Sciences, University of Wisconsin-Milwaukee, 53211, Milwaukee, WI, USA
271 rdf:type schema:Organization
272 https://www.grid.ac/institutes/grid.411202.4 schema:alternateName Kwangwoon University
273 schema:name Department of Chemistry, Kwangwoon University, 139-701, Seoul, Republic of Korea
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...