Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

Kuniharu Takei, Takeshi Kawano, Takahiro Kawashima, Kazuaki Sawada, Hidekazu Kaneko, Makoto Ishida

ABSTRACT

We report on the development of a microtube electrode array as a neural interface device. To combine the desired properties for the neural interface device, such as low invasiveness with a small needle and a good signal-to-noise ratio in neural recordings, we applied the structure of a glass pipette electrode to each microtube electrode. The device was fabricated as sub-5-microm-diameter out-of-plane silicon dioxide microtube arrays using silicon microneedle templates, which are grown by the selective vapor-liquid-solid method. The microtubes had inner diameters of 1.9-6.4 microm and a length of 25 microm. Impedances ranged from 220 kOmega to 1.55 MOmega, which are less than those for conventional microneedles. In addition, the microtube electrodes had less signal attenuation than conventional microneedle electrodes. We confirmed that the effects of parasitic capacitances between neighboring microtubes and channels were sufficiently small using a test signal. Finally, neural responses evoked from a rat peripheral nerve were recorded in vivo using a microtube electrode to confirm that this type of electrode can be used for both electrophysiological measurements and as a neural interface device. More... »

PAGES

41-48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10544-009-9356-y

DOI

http://dx.doi.org/10.1007/s10544-009-9356-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013632916

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19757069


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrodes, Implanted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Failure Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microelectrodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Miniaturization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Sprague-Dawley", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Cortex", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, 441-8580, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takei", 
        "givenName": "Kuniharu", 
        "id": "sg:person.0640320377.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640320377.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, 441-8580, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawano", 
        "givenName": "Takeshi", 
        "id": "sg:person.016620045721.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016620045721.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Temaku-cho, 441-8580, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawashima", 
        "givenName": "Takahiro", 
        "id": "sg:person.011471003715.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471003715.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, 441-8580, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawada", 
        "givenName": "Kazuaki", 
        "id": "sg:person.012271467225.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271467225.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "National Institute of Advanced Industrial Science and Technology (AIST), 1-1 Higashi, 305-8566, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaneko", 
        "givenName": "Hidekazu", 
        "id": "sg:person.01263212571.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263212571.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, 441-8580, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishida", 
        "givenName": "Makoto", 
        "id": "sg:person.011406773521.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406773521.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0960-1317/18/3/035033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001010908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004079234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004079234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-008-9259-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005235979", 
          "https://doi.org/10.1007/s10544-008-9259-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-008-9259-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005235979", 
          "https://doi.org/10.1007/s10544-008-9259-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007795162", 
          "https://doi.org/10.1038/nature04970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007795162", 
          "https://doi.org/10.1038/nature04970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007795162", 
          "https://doi.org/10.1038/nature04970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.5297-06.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010738471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-8993(03)03023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021112391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-8993(03)03023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021112391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.90989.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039538791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expneurol.2005.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expneurol.2005.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-006-9045-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042358620", 
          "https://doi.org/10.1007/s10544-006-9045-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-006-9045-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042358620", 
          "https://doi.org/10.1007/s10544-006-9045-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-008-9251-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048807436", 
          "https://doi.org/10.1007/s10544-008-9251-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-008-9251-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048807436", 
          "https://doi.org/10.1007/s10544-008-9251-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.1581292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048962890", 
          "https://doi.org/10.1114/1.1581292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802063q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802063q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1753975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057814420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.141202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.83588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061085664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2003.820544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2008.918262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061320669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.1970.4502738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061523626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2003.822473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061591199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.43.6848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063072909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.45.l108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063078080"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02", 
    "datePublishedReg": "2010-02-01", 
    "description": "We report on the development of a microtube electrode array as a neural interface device. To combine the desired properties for the neural interface device, such as low invasiveness with a small needle and a good signal-to-noise ratio in neural recordings, we applied the structure of a glass pipette electrode to each microtube electrode. The device was fabricated as sub-5-microm-diameter out-of-plane silicon dioxide microtube arrays using silicon microneedle templates, which are grown by the selective vapor-liquid-solid method. The microtubes had inner diameters of 1.9-6.4 microm and a length of 25 microm. Impedances ranged from 220 kOmega to 1.55 MOmega, which are less than those for conventional microneedles. In addition, the microtube electrodes had less signal attenuation than conventional microneedle electrodes. We confirmed that the effects of parasitic capacitances between neighboring microtubes and channels were sufficiently small using a test signal. Finally, neural responses evoked from a rat peripheral nerve were recorded in vivo using a microtube electrode to confirm that this type of electrode can be used for both electrophysiological measurements and as a neural interface device.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10544-009-9356-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5991234", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1021020", 
        "issn": [
          "1387-2176", 
          "1572-8781"
        ], 
        "name": "Biomedical Microdevices", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio", 
    "pagination": "41-48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "40f1bfb9aeafd076f5dcddb8bb8ee356108e974cfafca628bac6dcb535c76f03"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19757069"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100887374"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10544-009-9356-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013632916"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10544-009-9356-y", 
      "https://app.dimensions.ai/details/publication/pub.1013632916"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10544-009-9356-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10544-009-9356-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10544-009-9356-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10544-009-9356-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10544-009-9356-y'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      63 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10544-009-9356-y schema:about N057140dd5aad40e0967c04a8021540e5
2 N0e835b15ce78459884a81267c2dfb8da
3 N176dc2650a254102a6f9407de6d2e055
4 N5f0a3996c9844f6b8ef3978c1789f797
5 N6204ddc1ae714311ae366aae138d6053
6 N93a8c5c918644599b1807b5ff076a087
7 Na8ebd06fe795417aa633aa56ad0c0620
8 Nb19367d73df64bf087273cdf938dbdf3
9 Nb6ea7dadac4f41f384c217d71d2b6c5f
10 Nc790aa1ffcac48abbc21b0947e05e2db
11 Nd717cdd1124d4cbb94dd1948a123fe8f
12 Ne0d83ea6f132437190f5ef1020892c08
13 Nf6c96b9dd1d8470aafb5bbf2d15a1128
14 anzsrc-for:11
15 anzsrc-for:1109
16 schema:author Nb5957ba9e6d44684b809ebf7429d98b6
17 schema:citation sg:pub.10.1007/s10544-006-9045-z
18 sg:pub.10.1007/s10544-008-9251-y
19 sg:pub.10.1007/s10544-008-9259-3
20 sg:pub.10.1038/nature04970
21 sg:pub.10.1114/1.1581292
22 https://doi.org/10.1016/j.expneurol.2005.04.020
23 https://doi.org/10.1016/j.jneumeth.2005.08.015
24 https://doi.org/10.1016/s0006-8993(03)03023-3
25 https://doi.org/10.1021/nl802063q
26 https://doi.org/10.1063/1.1753975
27 https://doi.org/10.1088/0960-1317/18/3/035033
28 https://doi.org/10.1109/10.141202
29 https://doi.org/10.1109/10.83588
30 https://doi.org/10.1109/jproc.2003.820544
31 https://doi.org/10.1109/jsen.2008.918262
32 https://doi.org/10.1109/tbme.1970.4502738
33 https://doi.org/10.1109/ted.2003.822473
34 https://doi.org/10.1143/jjap.43.6848
35 https://doi.org/10.1143/jjap.45.l108
36 https://doi.org/10.1152/jn.90989.2008
37 https://doi.org/10.1523/jneurosci.5297-06.2007
38 schema:datePublished 2010-02
39 schema:datePublishedReg 2010-02-01
40 schema:description We report on the development of a microtube electrode array as a neural interface device. To combine the desired properties for the neural interface device, such as low invasiveness with a small needle and a good signal-to-noise ratio in neural recordings, we applied the structure of a glass pipette electrode to each microtube electrode. The device was fabricated as sub-5-microm-diameter out-of-plane silicon dioxide microtube arrays using silicon microneedle templates, which are grown by the selective vapor-liquid-solid method. The microtubes had inner diameters of 1.9-6.4 microm and a length of 25 microm. Impedances ranged from 220 kOmega to 1.55 MOmega, which are less than those for conventional microneedles. In addition, the microtube electrodes had less signal attenuation than conventional microneedle electrodes. We confirmed that the effects of parasitic capacitances between neighboring microtubes and channels were sufficiently small using a test signal. Finally, neural responses evoked from a rat peripheral nerve were recorded in vivo using a microtube electrode to confirm that this type of electrode can be used for both electrophysiological measurements and as a neural interface device.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N024b212bddad4ba29384d6609e1f280d
45 Nf2d8cddc06314d9496821fb8758a2e34
46 sg:journal.1021020
47 schema:name Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio
48 schema:pagination 41-48
49 schema:productId N208b23f33c9849d4aeb9e80dc707c5a6
50 N70af1bd7b8a5421082ce35135a8c701c
51 N7a554c94ae294c66a0e51f0357edd5d9
52 Ne8c7c39f8448468aa655bfecd3fe1dbf
53 Nff79ac2e89534d8088795f62ecc46246
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013632916
55 https://doi.org/10.1007/s10544-009-9356-y
56 schema:sdDatePublished 2019-04-11T14:28
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N741ee3f1d1ab4c69a337169562eb1908
59 schema:url http://link.springer.com/10.1007%2Fs10544-009-9356-y
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N024b212bddad4ba29384d6609e1f280d schema:volumeNumber 12
64 rdf:type schema:PublicationVolume
65 N057140dd5aad40e0967c04a8021540e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Equipment Design
67 rdf:type schema:DefinedTerm
68 N0e835b15ce78459884a81267c2dfb8da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Equipment Failure Analysis
70 rdf:type schema:DefinedTerm
71 N176dc2650a254102a6f9407de6d2e055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Rats, Sprague-Dawley
73 rdf:type schema:DefinedTerm
74 N1f3b5007e8834cc19e3c54b2ae374843 rdf:first sg:person.01263212571.60
75 rdf:rest Nc2caa11aad474676a64051be7ff63d88
76 N208b23f33c9849d4aeb9e80dc707c5a6 schema:name nlm_unique_id
77 schema:value 100887374
78 rdf:type schema:PropertyValue
79 N51f9e148b128461cbd566c4a47f8a377 rdf:first sg:person.011471003715.08
80 rdf:rest N95dd7e5437bf4b029853923102ac75d1
81 N5f0a3996c9844f6b8ef3978c1789f797 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Male
83 rdf:type schema:DefinedTerm
84 N6204ddc1ae714311ae366aae138d6053 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Animals
86 rdf:type schema:DefinedTerm
87 N70af1bd7b8a5421082ce35135a8c701c schema:name readcube_id
88 schema:value 40f1bfb9aeafd076f5dcddb8bb8ee356108e974cfafca628bac6dcb535c76f03
89 rdf:type schema:PropertyValue
90 N741ee3f1d1ab4c69a337169562eb1908 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N75ddc81bdacb415c9e1cef6c49bbcf48 rdf:first sg:person.016620045721.96
93 rdf:rest N51f9e148b128461cbd566c4a47f8a377
94 N7a554c94ae294c66a0e51f0357edd5d9 schema:name doi
95 schema:value 10.1007/s10544-009-9356-y
96 rdf:type schema:PropertyValue
97 N93a8c5c918644599b1807b5ff076a087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Microelectrodes
99 rdf:type schema:DefinedTerm
100 N95dd7e5437bf4b029853923102ac75d1 rdf:first sg:person.012271467225.40
101 rdf:rest N1f3b5007e8834cc19e3c54b2ae374843
102 Na8ebd06fe795417aa633aa56ad0c0620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Sensitivity and Specificity
104 rdf:type schema:DefinedTerm
105 Nb19367d73df64bf087273cdf938dbdf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Electroencephalography
107 rdf:type schema:DefinedTerm
108 Nb5957ba9e6d44684b809ebf7429d98b6 rdf:first sg:person.0640320377.44
109 rdf:rest N75ddc81bdacb415c9e1cef6c49bbcf48
110 Nb6ea7dadac4f41f384c217d71d2b6c5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Electrodes, Implanted
112 rdf:type schema:DefinedTerm
113 Nc2caa11aad474676a64051be7ff63d88 rdf:first sg:person.011406773521.22
114 rdf:rest rdf:nil
115 Nc790aa1ffcac48abbc21b0947e05e2db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Visual Cortex
117 rdf:type schema:DefinedTerm
118 Nd717cdd1124d4cbb94dd1948a123fe8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Reproducibility of Results
120 rdf:type schema:DefinedTerm
121 Ne0d83ea6f132437190f5ef1020892c08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Miniaturization
123 rdf:type schema:DefinedTerm
124 Ne8c7c39f8448468aa655bfecd3fe1dbf schema:name dimensions_id
125 schema:value pub.1013632916
126 rdf:type schema:PropertyValue
127 Nf2d8cddc06314d9496821fb8758a2e34 schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 Nf6c96b9dd1d8470aafb5bbf2d15a1128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Rats
131 rdf:type schema:DefinedTerm
132 Nff79ac2e89534d8088795f62ecc46246 schema:name pubmed_id
133 schema:value 19757069
134 rdf:type schema:PropertyValue
135 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
136 schema:name Medical and Health Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
139 schema:name Neurosciences
140 rdf:type schema:DefinedTerm
141 sg:grant.5991234 http://pending.schema.org/fundedItem sg:pub.10.1007/s10544-009-9356-y
142 rdf:type schema:MonetaryGrant
143 sg:journal.1021020 schema:issn 1387-2176
144 1572-8781
145 schema:name Biomedical Microdevices
146 rdf:type schema:Periodical
147 sg:person.011406773521.22 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
148 schema:familyName Ishida
149 schema:givenName Makoto
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406773521.22
151 rdf:type schema:Person
152 sg:person.011471003715.08 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
153 schema:familyName Kawashima
154 schema:givenName Takahiro
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471003715.08
156 rdf:type schema:Person
157 sg:person.012271467225.40 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
158 schema:familyName Sawada
159 schema:givenName Kazuaki
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271467225.40
161 rdf:type schema:Person
162 sg:person.01263212571.60 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
163 schema:familyName Kaneko
164 schema:givenName Hidekazu
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263212571.60
166 rdf:type schema:Person
167 sg:person.016620045721.96 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
168 schema:familyName Kawano
169 schema:givenName Takeshi
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016620045721.96
171 rdf:type schema:Person
172 sg:person.0640320377.44 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
173 schema:familyName Takei
174 schema:givenName Kuniharu
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640320377.44
176 rdf:type schema:Person
177 sg:pub.10.1007/s10544-006-9045-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042358620
178 https://doi.org/10.1007/s10544-006-9045-z
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s10544-008-9251-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048807436
181 https://doi.org/10.1007/s10544-008-9251-y
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10544-008-9259-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005235979
184 https://doi.org/10.1007/s10544-008-9259-3
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature04970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007795162
187 https://doi.org/10.1038/nature04970
188 rdf:type schema:CreativeWork
189 sg:pub.10.1114/1.1581292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048962890
190 https://doi.org/10.1114/1.1581292
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.expneurol.2005.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039747430
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jneumeth.2005.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004079234
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0006-8993(03)03023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021112391
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/nl802063q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221463
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.1753975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814420
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0960-1317/18/3/035033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001010908
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/10.141202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084017
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/10.83588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085664
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/jproc.2003.820544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296206
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/jsen.2008.918262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061320669
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/tbme.1970.4502738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523626
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/ted.2003.822473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061591199
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1143/jjap.43.6848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063072909
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1143/jjap.45.l108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063078080
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1152/jn.90989.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039538791
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1523/jneurosci.5297-06.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010738471
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
225 schema:name National Institute of Advanced Industrial Science and Technology (AIST), 1-1 Higashi, 305-8566, Tsukuba, Ibaraki, Japan
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.412804.b schema:alternateName Toyohashi University of Technology
228 schema:name Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, 441-8580, Toyohashi, Aichi, Japan
229 Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Temaku-cho, 441-8580, Toyohashi, Aichi, Japan
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...