The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-10-03

AUTHORS

Jeong Ah Kim, Hong Jai Lee, Hyun-Jae Kang, Tai Hyun Park

ABSTRACT

A common problem with the in vivo therapeutic applications of cells is that cells can rapidly disappear into the circulatory system after an injection. Magnetic nanoparticles can be used to solve this problem. Bacterial magnetic nanoparticles were used in this study for targeting stem cells at a specific location within a microfluidic channel. Magnetic nanoparticles were isolated from Magnetospirillum sp. AMB-1 and delivered to endothelial progenitor cells (EPCs). Cellular uptake of magnetic nanoparticles and their functional feasibility was characterized in vitro. The environment of a human blood vessel was simulated using a microfluidic channel. Magnetic nanoparticle-incorporated EPCs were injected into a microchannel and the flow rate of cells was uniformly controlled by use of a syringe pump. EPCs were effectively targeted to a specific location within the microchannel by an external magnetic field (about 400 mT). About 40% of EPCs were efficiently targeted with a flow rate of 5 μl min−1 when 10 μg of magnetic nanoparticles were used per 104 cells. This microfluidic system provides a useful tool towards a better understanding of the behavior of magnetic nanoparticle-incorporated cells within the human circulatory system for clinical use. More... »

PAGES

287-296

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10544-008-9235-y

DOI

http://dx.doi.org/10.1007/s10544-008-9235-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013269150

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18836835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endothelial Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetospirillum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microfluidic Analytical Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jeong Ah", 
        "id": "sg:person.01232425071.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232425071.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hong Jai", 
        "id": "sg:person.0705152004.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705152004.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University, College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine, Seoul National University, College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyun-Jae", 
        "id": "sg:person.01254550333.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254550333.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Tai Hyun", 
        "id": "sg:person.01022002011.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022002011.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02932313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046414334", 
          "https://doi.org/10.1007/bf02932313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047763482", 
          "https://doi.org/10.1007/bf02368167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1101-1194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050308225", 
          "https://doi.org/10.1038/nm1101-1194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02931801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020900298", 
          "https://doi.org/10.1007/bf02931801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00249-001-0200-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020044356", 
          "https://doi.org/10.1007/s00249-001-0200-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-10-03", 
    "datePublishedReg": "2008-10-03", 
    "description": "A common problem with the in vivo therapeutic applications of cells is that cells can rapidly disappear into the circulatory system after an injection. Magnetic nanoparticles can be used to solve this problem. Bacterial magnetic nanoparticles were used in this study for targeting stem cells at a specific location within a microfluidic channel. Magnetic nanoparticles were isolated from Magnetospirillum sp. AMB-1 and delivered to endothelial progenitor cells (EPCs). Cellular uptake of magnetic nanoparticles and their functional feasibility was characterized in vitro. The environment of a human blood vessel was simulated using a microfluidic channel. Magnetic nanoparticle-incorporated EPCs were injected into a microchannel and the flow rate of cells was uniformly controlled by use of a syringe pump. EPCs were effectively targeted to a specific location within the microchannel by an external magnetic field (about 400\u00a0mT). About 40% of EPCs were efficiently targeted with a flow rate of 5\u00a0\u03bcl min\u22121 when 10\u00a0\u03bcg of magnetic nanoparticles were used per 104 cells. This microfluidic system provides a useful tool towards a better understanding of the behavior of magnetic nanoparticle-incorporated cells within the human circulatory system for clinical use.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10544-008-9235-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1021020", 
        "issn": [
          "1387-2176", 
          "1572-8781"
        ], 
        "name": "Biomedical Microdevices", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "magnetic nanoparticles", 
      "microfluidic channel", 
      "bacterial magnetic nanoparticles", 
      "vivo therapeutic applications", 
      "nanoparticles", 
      "functional feasibility", 
      "channels", 
      "Magnetospirillum sp", 
      "therapeutic applications", 
      "stem cells", 
      "microfluidic system", 
      "cellular uptake", 
      "external magnetic field", 
      "human circulatory system", 
      "specific locations", 
      "AMB-1", 
      "system", 
      "human blood vessels", 
      "applications", 
      "progenitor cells", 
      "magnetic field", 
      "problem", 
      "targeting", 
      "feasibility", 
      "environment", 
      "microchannels", 
      "endothelial progenitor cells", 
      "location", 
      "syringe pump", 
      "rate", 
      "cells", 
      "use", 
      "clinical use", 
      "field", 
      "flow rate", 
      "circulatory system", 
      "tool", 
      "useful tool", 
      "common problem", 
      "pump", 
      "behavior", 
      "blood vessels", 
      "injection", 
      "uptake", 
      "better understanding", 
      "study", 
      "understanding", 
      "sp", 
      "vessels", 
      "Magnetic nanoparticle-incorporated EPCs", 
      "nanoparticle-incorporated EPCs", 
      "magnetic nanoparticle-incorporated cells", 
      "nanoparticle-incorporated cells"
    ], 
    "name": "The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles", 
    "pagination": "287-296", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013269150"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10544-008-9235-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18836835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10544-008-9235-y", 
      "https://app.dimensions.ai/details/publication/pub.1013269150"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_475.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10544-008-9235-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10544-008-9235-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10544-008-9235-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10544-008-9235-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10544-008-9235-y'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      22 PREDICATES      92 URIs      78 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10544-008-9235-y schema:about N0f4da0a6090d44709f1a38157ebcffec
2 N31462c160c9f4f5fb8cbebab15aa4e68
3 N4801bf53381d49d09a01a745866d0919
4 N70fdf3028ae84b7d83eb9f3ee72a1042
5 N7665c0a5274c43ae8063f690ef2a7018
6 N8a875df05e0b463291e23315e1565809
7 Ned2ef85d0ede400ba5f97867d19fcd55
8 anzsrc-for:09
9 anzsrc-for:0903
10 anzsrc-for:0912
11 schema:author Nbeb944ed9e7a4f8daa991e6d97a10b2a
12 schema:citation sg:pub.10.1007/bf02368167
13 sg:pub.10.1007/bf02931801
14 sg:pub.10.1007/bf02932313
15 sg:pub.10.1007/s00249-001-0200-4
16 sg:pub.10.1038/nm1101-1194
17 schema:datePublished 2008-10-03
18 schema:datePublishedReg 2008-10-03
19 schema:description A common problem with the in vivo therapeutic applications of cells is that cells can rapidly disappear into the circulatory system after an injection. Magnetic nanoparticles can be used to solve this problem. Bacterial magnetic nanoparticles were used in this study for targeting stem cells at a specific location within a microfluidic channel. Magnetic nanoparticles were isolated from Magnetospirillum sp. AMB-1 and delivered to endothelial progenitor cells (EPCs). Cellular uptake of magnetic nanoparticles and their functional feasibility was characterized in vitro. The environment of a human blood vessel was simulated using a microfluidic channel. Magnetic nanoparticle-incorporated EPCs were injected into a microchannel and the flow rate of cells was uniformly controlled by use of a syringe pump. EPCs were effectively targeted to a specific location within the microchannel by an external magnetic field (about 400 mT). About 40% of EPCs were efficiently targeted with a flow rate of 5 μl min−1 when 10 μg of magnetic nanoparticles were used per 104 cells. This microfluidic system provides a useful tool towards a better understanding of the behavior of magnetic nanoparticle-incorporated cells within the human circulatory system for clinical use.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N480167de3a9f477799f932d68f06e0b9
24 N67b4a88ab6fa471ca1b80d6272b6c464
25 sg:journal.1021020
26 schema:keywords AMB-1
27 Magnetic nanoparticle-incorporated EPCs
28 Magnetospirillum sp
29 applications
30 bacterial magnetic nanoparticles
31 behavior
32 better understanding
33 blood vessels
34 cells
35 cellular uptake
36 channels
37 circulatory system
38 clinical use
39 common problem
40 endothelial progenitor cells
41 environment
42 external magnetic field
43 feasibility
44 field
45 flow rate
46 functional feasibility
47 human blood vessels
48 human circulatory system
49 injection
50 location
51 magnetic field
52 magnetic nanoparticle-incorporated cells
53 magnetic nanoparticles
54 microchannels
55 microfluidic channel
56 microfluidic system
57 nanoparticle-incorporated EPCs
58 nanoparticle-incorporated cells
59 nanoparticles
60 problem
61 progenitor cells
62 pump
63 rate
64 sp
65 specific locations
66 stem cells
67 study
68 syringe pump
69 system
70 targeting
71 therapeutic applications
72 tool
73 understanding
74 uptake
75 use
76 useful tool
77 vessels
78 vivo therapeutic applications
79 schema:name The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles
80 schema:pagination 287-296
81 schema:productId N2ffd47ec5b6d458ea9c6475a41c47e6f
82 N415132d7f32346afaa1473178ce6f9f6
83 Nd73e7e4647924554bb86aeb07dfd6752
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013269150
85 https://doi.org/10.1007/s10544-008-9235-y
86 schema:sdDatePublished 2022-01-01T18:19
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nc5485597cb124e68b3671958e375c8e7
89 schema:url https://doi.org/10.1007/s10544-008-9235-y
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N0f4da0a6090d44709f1a38157ebcffec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Magnetics
95 rdf:type schema:DefinedTerm
96 N2ffd47ec5b6d458ea9c6475a41c47e6f schema:name dimensions_id
97 schema:value pub.1013269150
98 rdf:type schema:PropertyValue
99 N31462c160c9f4f5fb8cbebab15aa4e68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Nanoparticles
101 rdf:type schema:DefinedTerm
102 N415132d7f32346afaa1473178ce6f9f6 schema:name doi
103 schema:value 10.1007/s10544-008-9235-y
104 rdf:type schema:PropertyValue
105 N480167de3a9f477799f932d68f06e0b9 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N4801bf53381d49d09a01a745866d0919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N67b4a88ab6fa471ca1b80d6272b6c464 schema:volumeNumber 11
111 rdf:type schema:PublicationVolume
112 N70fdf3028ae84b7d83eb9f3ee72a1042 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Microfluidic Analytical Techniques
114 rdf:type schema:DefinedTerm
115 N7665c0a5274c43ae8063f690ef2a7018 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Stem Cells
117 rdf:type schema:DefinedTerm
118 N8a875df05e0b463291e23315e1565809 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Endothelial Cells
120 rdf:type schema:DefinedTerm
121 Nb4d9603bae9c4fb99a6429dc431d050a rdf:first sg:person.0705152004.00
122 rdf:rest Nc7be562b28b844f5a5e31a2c88a88cf7
123 Nbeb944ed9e7a4f8daa991e6d97a10b2a rdf:first sg:person.01232425071.76
124 rdf:rest Nb4d9603bae9c4fb99a6429dc431d050a
125 Nc5485597cb124e68b3671958e375c8e7 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nc7be562b28b844f5a5e31a2c88a88cf7 rdf:first sg:person.01254550333.69
128 rdf:rest Nd8587f856f6c4e07838ac916d9ca7642
129 Nd73e7e4647924554bb86aeb07dfd6752 schema:name pubmed_id
130 schema:value 18836835
131 rdf:type schema:PropertyValue
132 Nd8587f856f6c4e07838ac916d9ca7642 rdf:first sg:person.01022002011.85
133 rdf:rest rdf:nil
134 Ned2ef85d0ede400ba5f97867d19fcd55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Magnetospirillum
136 rdf:type schema:DefinedTerm
137 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
138 schema:name Engineering
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biomedical Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
144 schema:name Materials Engineering
145 rdf:type schema:DefinedTerm
146 sg:journal.1021020 schema:issn 1387-2176
147 1572-8781
148 schema:name Biomedical Microdevices
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.01022002011.85 schema:affiliation grid-institutes:grid.31501.36
152 schema:familyName Park
153 schema:givenName Tai Hyun
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022002011.85
155 rdf:type schema:Person
156 sg:person.01232425071.76 schema:affiliation grid-institutes:grid.31501.36
157 schema:familyName Kim
158 schema:givenName Jeong Ah
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232425071.76
160 rdf:type schema:Person
161 sg:person.01254550333.69 schema:affiliation grid-institutes:grid.31501.36
162 schema:familyName Kang
163 schema:givenName Hyun-Jae
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254550333.69
165 rdf:type schema:Person
166 sg:person.0705152004.00 schema:affiliation grid-institutes:grid.31501.36
167 schema:familyName Lee
168 schema:givenName Hong Jai
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705152004.00
170 rdf:type schema:Person
171 sg:pub.10.1007/bf02368167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047763482
172 https://doi.org/10.1007/bf02368167
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf02931801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020900298
175 https://doi.org/10.1007/bf02931801
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/bf02932313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046414334
178 https://doi.org/10.1007/bf02932313
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00249-001-0200-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020044356
181 https://doi.org/10.1007/s00249-001-0200-4
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nm1101-1194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050308225
184 https://doi.org/10.1038/nm1101-1194
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.31501.36 schema:alternateName Department of Internal Medicine, Seoul National University, College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, South Korea
187 School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea
188 schema:name Department of Internal Medicine, Seoul National University, College of Medicine, 28 Yongon-dong, Chongno-gu, 110-744, Seoul, South Korea
189 School of Chemical and Biological Engineering, Institute of Bioengineering, Seoul National University, 599 Gwanangno, Gwanak-gu, 151-742, Seoul, South Korea
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...