Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

Katrin Viehweger, Gerhard Geipel, Gert Bernhard

ABSTRACT

Uranium (U) as a redox-active heavy metal can cause various redox imbalances in plant cells. Measurements of the cellular glutathione/glutathione disulfide (GSH/GSSG) by HPLC after cellular U contact revealed an interference with this essential redox couple. The GSH content remained unaffected by 10 μM U whereas the GSSG level immediately increased. In contrast, higher U concentrations (50 μM) drastically raised both forms. Using the Nernst equation, it was possible to calculate the half-cell reduction potential of 2GSH/GSSG. In case of lower U contents the cellular redox environment shifted towards more oxidizing conditions whereas the opposite effect was obtained by higher U contents. This indicates that U contact causes a consumption of reduced redox equivalents. Artificial depletion of GSH by chlorodinitrobenzene and measuring the cellular reducing capacity by tetrazolium salt reduction underlined the strong requirement of reduced redox equivalents. An additional element of cellular U detoxification mechanisms is the complex formation between the heavy metal and carboxylic functionalities of GSH. Because two GSH molecules catalyze electron transfers each with one electron forming a dimer (GSSG) two UO(2) (2+) are reduced to each UO(2) (+) by unbound redox sensitive sulfhydryl moieties. UO(2) (+) subsequently disproportionates to UO(2) (2+) and U(4+). This explains that in vitro experiments revealed a reduction to U(IV) of only around 33% of initial U(VI). Cellular U(IV) was transiently detected with the highest level after 2 h of U contact. Hence, it can be proposed that these reducing processes are an important element of defense reactions induced by this heavy metal. More... »

PAGES

1197-1204

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10534-011-9478-6

DOI

http://dx.doi.org/10.1007/s10534-011-9478-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010597357

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21755302


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brassica napus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoplasm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dinitrochlorobenzene", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutathione", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uranium", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Biogeochemistry Division, Institute of Radiochemistry, Helmholtz-Zentrum Dresden-Rossendorf eV, P.O. Box 510119, 01314, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viehweger", 
        "givenName": "Katrin", 
        "id": "sg:person.0672647502.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672647502.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Biogeochemistry Division, Institute of Radiochemistry, Helmholtz-Zentrum Dresden-Rossendorf eV, P.O. Box 510119, 01314, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geipel", 
        "givenName": "Gerhard", 
        "id": "sg:person.0634716575.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634716575.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Biogeochemistry Division, Institute of Radiochemistry, Helmholtz-Zentrum Dresden-Rossendorf eV, P.O. Box 510119, 01314, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernhard", 
        "givenName": "Gert", 
        "id": "sg:person.01251577150.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251577150.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1042/bj0390507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002034665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0390507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002034665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003557549", 
          "https://doi.org/10.1038/nature09265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.105.033589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004289051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10409238809088226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004579875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.poly.2006.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006965805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2011.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007307964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3002(63)90513-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007530243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3002(63)90513-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007530243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/ract.1982.31.34.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010418771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1974.tb14407.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014039856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/201185a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018517763", 
          "https://doi.org/10.1038/201185a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0891-5849(01)00480-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018930552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plaphy.2008.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020673262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es800647u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021603664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es800647u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021603664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-2952(96)00570-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023922696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.49.1.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025501457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m408622200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026343663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plaphy.2006.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026449765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2008.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027652367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.105.035121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029142676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.2005.01476.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031560086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.2005.01476.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031560086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abbi.1993.1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039410910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/rcpr.2011.0063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040325408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(81)90498-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040906607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envexpbot.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041389995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-291x(85)91233-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044208479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jscs.2009.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052357005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m002997200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052829865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/ract.91.6.319.20022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067648077"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "Uranium (U) as a redox-active heavy metal can cause various redox imbalances in plant cells. Measurements of the cellular glutathione/glutathione disulfide (GSH/GSSG) by HPLC after cellular U contact revealed an interference with this essential redox couple. The GSH content remained unaffected by 10\u00a0\u03bcM U whereas the GSSG level immediately increased. In contrast, higher U concentrations (50\u00a0\u03bcM) drastically raised both forms. Using the Nernst equation, it was possible to calculate the half-cell reduction potential of 2GSH/GSSG. In case of lower U contents the cellular redox environment shifted towards more oxidizing conditions whereas the opposite effect was obtained by higher U contents. This indicates that U contact causes a consumption of reduced redox equivalents. Artificial depletion of GSH by chlorodinitrobenzene and measuring the cellular reducing capacity by tetrazolium salt reduction underlined the strong requirement of reduced redox equivalents. An additional element of cellular U detoxification mechanisms is the complex formation between the heavy metal and carboxylic functionalities of GSH. Because two GSH molecules catalyze electron transfers each with one electron forming a dimer (GSSG) two UO(2)                                   (2+) are reduced to each UO(2)                                   (+) by unbound redox sensitive sulfhydryl moieties. UO(2)                                   (+) subsequently disproportionates to UO(2)                                   (2+) and U(4+). This explains that in vitro experiments revealed a reduction to U(IV) of only around 33% of initial U(VI). Cellular U(IV) was transiently detected with the highest level after 2\u00a0h of U contact. Hence, it can be proposed that these reducing processes are an important element of defense reactions induced by this heavy metal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10534-011-9478-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102420", 
        "issn": [
          "0966-0844", 
          "1572-8773"
        ], 
        "name": "BioMetals", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U", 
    "pagination": "1197-1204", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "327c7ddd2ad34309ea890533673d966e04804c91854d408819a7d1e658a3f3d6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21755302"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9208478"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10534-011-9478-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010597357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10534-011-9478-6", 
      "https://app.dimensions.ai/details/publication/pub.1010597357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10534-011-9478-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10534-011-9478-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10534-011-9478-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10534-011-9478-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10534-011-9478-6'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      64 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10534-011-9478-6 schema:about N058fc3cf52d24e42a285278c4aeaaf9d
2 N30c89bea924a4058a832c8dfa2e8a97c
3 N4a4f08a1bb1a4f75802dfdeffab8424a
4 N836d59a34d1347008d22acb0c5fb5627
5 Nc1a203f5c99f47b5a3b7287353493bdb
6 Nc67f02f13e3c4f0b8c1b8fbd56593a47
7 Ndc852e4b11b440d8be3ab08602492c53
8 anzsrc-for:03
9 anzsrc-for:0302
10 schema:author N266f50a3cbde4dad96eeebf532567b00
11 schema:citation sg:pub.10.1038/201185a0
12 sg:pub.10.1038/nature09265
13 https://doi.org/10.1006/abbi.1993.1311
14 https://doi.org/10.1016/0003-2697(81)90498-x
15 https://doi.org/10.1016/0006-291x(85)91233-1
16 https://doi.org/10.1016/0006-3002(63)90513-4
17 https://doi.org/10.1016/j.envexpbot.2010.03.001
18 https://doi.org/10.1016/j.geoderma.2011.01.012
19 https://doi.org/10.1016/j.jscs.2009.12.016
20 https://doi.org/10.1016/j.plaphy.2006.10.013
21 https://doi.org/10.1016/j.plaphy.2008.06.003
22 https://doi.org/10.1016/j.poly.2006.07.030
23 https://doi.org/10.1016/j.tplants.2008.10.007
24 https://doi.org/10.1016/s0006-2952(96)00570-9
25 https://doi.org/10.1016/s0891-5849(01)00480-4
26 https://doi.org/10.1021/es800647u
27 https://doi.org/10.1042/bj0390507
28 https://doi.org/10.1074/jbc.m002997200
29 https://doi.org/10.1074/jbc.m408622200
30 https://doi.org/10.1105/tpc.105.033589
31 https://doi.org/10.1105/tpc.105.035121
32 https://doi.org/10.1111/j.1365-3040.2005.01476.x
33 https://doi.org/10.1111/j.1749-6632.1974.tb14407.x
34 https://doi.org/10.1146/annurev.arplant.49.1.249
35 https://doi.org/10.1524/ract.1982.31.34.135
36 https://doi.org/10.1524/ract.91.6.319.20022
37 https://doi.org/10.1524/rcpr.2011.0063
38 https://doi.org/10.3109/10409238809088226
39 schema:datePublished 2011-12
40 schema:datePublishedReg 2011-12-01
41 schema:description Uranium (U) as a redox-active heavy metal can cause various redox imbalances in plant cells. Measurements of the cellular glutathione/glutathione disulfide (GSH/GSSG) by HPLC after cellular U contact revealed an interference with this essential redox couple. The GSH content remained unaffected by 10 μM U whereas the GSSG level immediately increased. In contrast, higher U concentrations (50 μM) drastically raised both forms. Using the Nernst equation, it was possible to calculate the half-cell reduction potential of 2GSH/GSSG. In case of lower U contents the cellular redox environment shifted towards more oxidizing conditions whereas the opposite effect was obtained by higher U contents. This indicates that U contact causes a consumption of reduced redox equivalents. Artificial depletion of GSH by chlorodinitrobenzene and measuring the cellular reducing capacity by tetrazolium salt reduction underlined the strong requirement of reduced redox equivalents. An additional element of cellular U detoxification mechanisms is the complex formation between the heavy metal and carboxylic functionalities of GSH. Because two GSH molecules catalyze electron transfers each with one electron forming a dimer (GSSG) two UO(2) (2+) are reduced to each UO(2) (+) by unbound redox sensitive sulfhydryl moieties. UO(2) (+) subsequently disproportionates to UO(2) (2+) and U(4+). This explains that in vitro experiments revealed a reduction to U(IV) of only around 33% of initial U(VI). Cellular U(IV) was transiently detected with the highest level after 2 h of U contact. Hence, it can be proposed that these reducing processes are an important element of defense reactions induced by this heavy metal.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N3e55386cddea430a9121f6295ee139a6
46 N5a12f849886147daaa48268c9bdc8c04
47 sg:journal.1102420
48 schema:name Impact of uranium (U) on the cellular glutathione pool and resultant consequences for the redox status of U
49 schema:pagination 1197-1204
50 schema:productId N12d857dc3caa4115af1a421f7aac4f6a
51 N95e02b917aaa426090c1103414655b57
52 Nc1987005d791443c95131b2d15b08281
53 Nc1eefa07333542fbb3df84160db618f6
54 Nc3641b0b1a50401da4f03d648d7c3663
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010597357
56 https://doi.org/10.1007/s10534-011-9478-6
57 schema:sdDatePublished 2019-04-11T02:13
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ne872e3384a604b4c9c2fc0b1424dd79c
60 schema:url http://link.springer.com/10.1007%2Fs10534-011-9478-6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N058fc3cf52d24e42a285278c4aeaaf9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Uranium
66 rdf:type schema:DefinedTerm
67 N12d857dc3caa4115af1a421f7aac4f6a schema:name doi
68 schema:value 10.1007/s10534-011-9478-6
69 rdf:type schema:PropertyValue
70 N20d0e636b906408899d3a2bf0e5faa97 rdf:first sg:person.0634716575.49
71 rdf:rest N90194c1ef65841ffb5df2a9ef86621b6
72 N266f50a3cbde4dad96eeebf532567b00 rdf:first sg:person.0672647502.07
73 rdf:rest N20d0e636b906408899d3a2bf0e5faa97
74 N30c89bea924a4058a832c8dfa2e8a97c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Glutathione
76 rdf:type schema:DefinedTerm
77 N3e55386cddea430a9121f6295ee139a6 schema:issueNumber 6
78 rdf:type schema:PublicationIssue
79 N4a4f08a1bb1a4f75802dfdeffab8424a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Oxidation-Reduction
81 rdf:type schema:DefinedTerm
82 N5a12f849886147daaa48268c9bdc8c04 schema:volumeNumber 24
83 rdf:type schema:PublicationVolume
84 N836d59a34d1347008d22acb0c5fb5627 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Brassica napus
86 rdf:type schema:DefinedTerm
87 N90194c1ef65841ffb5df2a9ef86621b6 rdf:first sg:person.01251577150.29
88 rdf:rest rdf:nil
89 N95e02b917aaa426090c1103414655b57 schema:name nlm_unique_id
90 schema:value 9208478
91 rdf:type schema:PropertyValue
92 Nc1987005d791443c95131b2d15b08281 schema:name dimensions_id
93 schema:value pub.1010597357
94 rdf:type schema:PropertyValue
95 Nc1a203f5c99f47b5a3b7287353493bdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Cytoplasm
97 rdf:type schema:DefinedTerm
98 Nc1eefa07333542fbb3df84160db618f6 schema:name pubmed_id
99 schema:value 21755302
100 rdf:type schema:PropertyValue
101 Nc3641b0b1a50401da4f03d648d7c3663 schema:name readcube_id
102 schema:value 327c7ddd2ad34309ea890533673d966e04804c91854d408819a7d1e658a3f3d6
103 rdf:type schema:PropertyValue
104 Nc67f02f13e3c4f0b8c1b8fbd56593a47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cells, Cultured
106 rdf:type schema:DefinedTerm
107 Ndc852e4b11b440d8be3ab08602492c53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Dinitrochlorobenzene
109 rdf:type schema:DefinedTerm
110 Ne872e3384a604b4c9c2fc0b1424dd79c schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
116 schema:name Inorganic Chemistry
117 rdf:type schema:DefinedTerm
118 sg:journal.1102420 schema:issn 0966-0844
119 1572-8773
120 schema:name BioMetals
121 rdf:type schema:Periodical
122 sg:person.01251577150.29 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
123 schema:familyName Bernhard
124 schema:givenName Gert
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251577150.29
126 rdf:type schema:Person
127 sg:person.0634716575.49 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
128 schema:familyName Geipel
129 schema:givenName Gerhard
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634716575.49
131 rdf:type schema:Person
132 sg:person.0672647502.07 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
133 schema:familyName Viehweger
134 schema:givenName Katrin
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672647502.07
136 rdf:type schema:Person
137 sg:pub.10.1038/201185a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018517763
138 https://doi.org/10.1038/201185a0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature09265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003557549
141 https://doi.org/10.1038/nature09265
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1006/abbi.1993.1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039410910
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0003-2697(81)90498-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040906607
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0006-291x(85)91233-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044208479
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0006-3002(63)90513-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007530243
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.envexpbot.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041389995
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.geoderma.2011.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007307964
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jscs.2009.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052357005
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.plaphy.2006.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026449765
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.plaphy.2008.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020673262
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.poly.2006.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006965805
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.tplants.2008.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027652367
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0006-2952(96)00570-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023922696
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0891-5849(01)00480-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018930552
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/es800647u schema:sameAs https://app.dimensions.ai/details/publication/pub.1021603664
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1042/bj0390507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002034665
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1074/jbc.m002997200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052829865
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1074/jbc.m408622200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026343663
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1105/tpc.105.033589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004289051
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1105/tpc.105.035121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029142676
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1365-3040.2005.01476.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031560086
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1749-6632.1974.tb14407.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014039856
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1146/annurev.arplant.49.1.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025501457
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1524/ract.1982.31.34.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010418771
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1524/ract.91.6.319.20022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067648077
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1524/rcpr.2011.0063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040325408
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3109/10409238809088226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004579875
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.40602.30 schema:alternateName Helmholtz-Zentrum Dresden-Rossendorf
196 schema:name Biogeochemistry Division, Institute of Radiochemistry, Helmholtz-Zentrum Dresden-Rossendorf eV, P.O. Box 510119, 01314, Dresden, Germany
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...