Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-01-15

AUTHORS

Ali Khalighifar, Rafe M. Brown, Johana Goyes Vallejos, A. Townsend Peterson

ABSTRACT

One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. Incorporating distributional data increased the overall identification rate to ~ 99%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in “certainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition. More... »

PAGES

643-657

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10531-020-02107-1

DOI

http://dx.doi.org/10.1007/s10531-020-02107-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134624702


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.47894.36", 
          "name": [
            "Biodiversity Institute, University of Kansas, Lawrence, KS, USA", 
            "Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA", 
            "Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khalighifar", 
        "givenName": "Ali", 
        "id": "sg:person.012500033033.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012500033033.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Biodiversity Institute, University of Kansas, Lawrence, KS, USA", 
            "Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Rafe M.", 
        "id": "sg:person.01237667032.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237667032.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biological Sciences, University of Missouri, Columbia, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Biodiversity Institute, University of Kansas, Lawrence, KS, USA", 
            "Division of Biological Sciences, University of Missouri, Columbia, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goyes Vallejos", 
        "givenName": "Johana", 
        "id": "sg:person.016650630117.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650630117.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Biodiversity Institute, University of Kansas, Lawrence, KS, USA", 
            "Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peterson", 
        "givenName": "A. Townsend", 
        "id": "sg:person.0706121233.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706121233.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13007-017-0245-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092526471", 
          "https://doi.org/10.1186/s13007-017-0245-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33709-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035838871", 
          "https://doi.org/10.1007/978-3-642-33709-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-019-13993-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123915232", 
          "https://doi.org/10.1038/s41467-019-13993-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/467154a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215414", 
          "https://doi.org/10.1038/467154a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-47796-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024361964", 
          "https://doi.org/10.1007/978-0-387-47796-1_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0816-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767488", 
          "https://doi.org/10.1007/s11263-015-0816-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-50795-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121472449", 
          "https://doi.org/10.1038/s41598-019-50795-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-020-14356-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124148859", 
          "https://doi.org/10.1038/s41467-020-14356-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-15", 
    "datePublishedReg": "2021-01-15", 
    "description": "One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth\u2019s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a\u2009~\u200994% overall correct identification rate. Incorporating distributional data increased the overall identification rate to\u2009~\u200999%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in \u201ccertainty\u201d rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10531-020-02107-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3009350", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5540458", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3084401", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6933352", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3484165", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1128750", 
        "issn": [
          "0960-3115", 
          "1572-9710"
        ], 
        "name": "Biodiversity and Conservation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "efficient data processing", 
      "deep learning models", 
      "deep learning", 
      "Inception V3", 
      "species identification system", 
      "audio spectrograms", 
      "identification rate", 
      "data processing", 
      "identification system", 
      "TensorFlow", 
      "overall correct identification rate", 
      "correct identification rate", 
      "platform", 
      "significant challenge", 
      "monitoring devices", 
      "dataset", 
      "overall identification rate", 
      "species-specific advertisement call", 
      "challenges", 
      "learning", 
      "devices", 
      "images", 
      "concept", 
      "model", 
      "processing", 
      "spectrogram", 
      "vibrational cues", 
      "data", 
      "performance", 
      "detection", 
      "diversity knowledge", 
      "proof", 
      "system", 
      "biodiversity monitoring", 
      "discovery rate", 
      "pace", 
      "accurate species-level identification", 
      "signals", 
      "calls", 
      "monitoring", 
      "knowledge", 
      "identification", 
      "discovery", 
      "work", 
      "seismic signals", 
      "V3", 
      "most biodiverse areas", 
      "gap", 
      "cues", 
      "promise", 
      "area", 
      "addition", 
      "species discovery", 
      "certainty", 
      "potential", 
      "rate", 
      "biodiversity assessment", 
      "mate recognition signals", 
      "species identification", 
      "assessment", 
      "persistent gap", 
      "call notes", 
      "note", 
      "new species discovery", 
      "frog species", 
      "biodiverse areas", 
      "distributional data", 
      "variation", 
      "species-level identification", 
      "conservation", 
      "group", 
      "premium", 
      "Philippines", 
      "frogs", 
      "possible new species", 
      "undescribed species", 
      "species", 
      "advertisement call", 
      "new species", 
      "novel species"
    ], 
    "name": "Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines", 
    "pagination": "643-657", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134624702"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10531-020-02107-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10531-020-02107-1", 
      "https://app.dimensions.ai/details/publication/pub.1134624702"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_873.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10531-020-02107-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10531-020-02107-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10531-020-02107-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10531-020-02107-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10531-020-02107-1'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      112 URIs      96 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10531-020-02107-1 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author N9fd6d67abf9f402a9a343a0adfb2c059
4 schema:citation sg:pub.10.1007/978-0-387-47796-1_3
5 sg:pub.10.1007/978-3-642-33709-3_36
6 sg:pub.10.1007/s11263-015-0816-y
7 sg:pub.10.1038/467154a
8 sg:pub.10.1038/s41467-019-13993-7
9 sg:pub.10.1038/s41467-020-14356-3
10 sg:pub.10.1038/s41598-019-50795-9
11 sg:pub.10.1186/s13007-017-0245-8
12 schema:datePublished 2021-01-15
13 schema:datePublishedReg 2021-01-15
14 schema:description One significant challenge to biodiversity assessment and conservation is persistent gaps in species diversity knowledge in Earth’s most biodiverse areas. Monitoring devices that utilize species-specific advertisement calls show promise in overcoming challenges associated with lagging frog species discovery rates. However, these devices generate data at paces faster than it can be analyzed. As such, automated platforms capable of efficient data processing and accurate species-level identification are at a premium. In addressing this gap, we used TensorFlow Inception v3 to design a robust, automated species identification system for 41 Philippine frog species (genus Platymantis), utilizing single-note audio spectrograms. With this model, we explored two concepts: (1) performance of our deep-learning model in discriminating closely-related frog species based on images representing advertisement call notes, and (2) the potential of this platform to accelerate new species discovery. TensorFlow identified species with a ~ 94% overall correct identification rate. Incorporating distributional data increased the overall identification rate to ~ 99%. In applying TensorFlow to a dataset that included undescribed species in addition to known species, our model was able to differentiate undescribed species through variation in “certainty” rate; the overall certainty rate for undescribed species was 65.5% versus 83.6% for described species. This indicates that, in addition to discriminating recognized frog species, our model has the potential to flag possible new species. As such, this work represents a proof-of-concept for automated, accelerated detection of novel species using acoustic mate-recognition signals, that can be applied to other groups characterized by vibrational cues, seismic signals, and vibrational mate-recognition.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N18be8a313ae04fdf910f0bdf35f933c8
18 Nb992df65fad74e3c9efae0f02a088fc2
19 sg:journal.1128750
20 schema:keywords Inception V3
21 Philippines
22 TensorFlow
23 V3
24 accurate species-level identification
25 addition
26 advertisement call
27 area
28 assessment
29 audio spectrograms
30 biodiverse areas
31 biodiversity assessment
32 biodiversity monitoring
33 call notes
34 calls
35 certainty
36 challenges
37 concept
38 conservation
39 correct identification rate
40 cues
41 data
42 data processing
43 dataset
44 deep learning
45 deep learning models
46 detection
47 devices
48 discovery
49 discovery rate
50 distributional data
51 diversity knowledge
52 efficient data processing
53 frog species
54 frogs
55 gap
56 group
57 identification
58 identification rate
59 identification system
60 images
61 knowledge
62 learning
63 mate recognition signals
64 model
65 monitoring
66 monitoring devices
67 most biodiverse areas
68 new species
69 new species discovery
70 note
71 novel species
72 overall correct identification rate
73 overall identification rate
74 pace
75 performance
76 persistent gap
77 platform
78 possible new species
79 potential
80 premium
81 processing
82 promise
83 proof
84 rate
85 seismic signals
86 signals
87 significant challenge
88 species
89 species discovery
90 species identification
91 species identification system
92 species-level identification
93 species-specific advertisement call
94 spectrogram
95 system
96 undescribed species
97 variation
98 vibrational cues
99 work
100 schema:name Deep learning improves acoustic biodiversity monitoring and new candidate forest frog species identification (genus Platymantis) in the Philippines
101 schema:pagination 643-657
102 schema:productId N1e18065ae7fb4c379bd99bafac146d67
103 Nccfb0595d23b4998a161ca3fc9cf4c03
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134624702
105 https://doi.org/10.1007/s10531-020-02107-1
106 schema:sdDatePublished 2022-12-01T06:41
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nebffdbe070494a2e8d41cf5fde0df14d
109 schema:url https://doi.org/10.1007/s10531-020-02107-1
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N05eca57badf74ba8b536294a346ffacc rdf:first sg:person.01237667032.83
114 rdf:rest N72717139fce844c990868698c48de3a6
115 N18be8a313ae04fdf910f0bdf35f933c8 schema:volumeNumber 30
116 rdf:type schema:PublicationVolume
117 N1e18065ae7fb4c379bd99bafac146d67 schema:name doi
118 schema:value 10.1007/s10531-020-02107-1
119 rdf:type schema:PropertyValue
120 N4a9a4a972c4947498271c3ed65d37cfa rdf:first sg:person.0706121233.04
121 rdf:rest rdf:nil
122 N72717139fce844c990868698c48de3a6 rdf:first sg:person.016650630117.44
123 rdf:rest N4a9a4a972c4947498271c3ed65d37cfa
124 N9fd6d67abf9f402a9a343a0adfb2c059 rdf:first sg:person.012500033033.21
125 rdf:rest N05eca57badf74ba8b536294a346ffacc
126 Nb992df65fad74e3c9efae0f02a088fc2 schema:issueNumber 3
127 rdf:type schema:PublicationIssue
128 Nccfb0595d23b4998a161ca3fc9cf4c03 schema:name dimensions_id
129 schema:value pub.1134624702
130 rdf:type schema:PropertyValue
131 Nebffdbe070494a2e8d41cf5fde0df14d schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
134 schema:name Environmental Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
137 schema:name Environmental Science and Management
138 rdf:type schema:DefinedTerm
139 sg:grant.3009350 http://pending.schema.org/fundedItem sg:pub.10.1007/s10531-020-02107-1
140 rdf:type schema:MonetaryGrant
141 sg:grant.3084401 http://pending.schema.org/fundedItem sg:pub.10.1007/s10531-020-02107-1
142 rdf:type schema:MonetaryGrant
143 sg:grant.3484165 http://pending.schema.org/fundedItem sg:pub.10.1007/s10531-020-02107-1
144 rdf:type schema:MonetaryGrant
145 sg:grant.5540458 http://pending.schema.org/fundedItem sg:pub.10.1007/s10531-020-02107-1
146 rdf:type schema:MonetaryGrant
147 sg:grant.6933352 http://pending.schema.org/fundedItem sg:pub.10.1007/s10531-020-02107-1
148 rdf:type schema:MonetaryGrant
149 sg:journal.1128750 schema:issn 0960-3115
150 1572-9710
151 schema:name Biodiversity and Conservation
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01237667032.83 schema:affiliation grid-institutes:grid.266515.3
155 schema:familyName Brown
156 schema:givenName Rafe M.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237667032.83
158 rdf:type schema:Person
159 sg:person.012500033033.21 schema:affiliation grid-institutes:grid.47894.36
160 schema:familyName Khalighifar
161 schema:givenName Ali
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012500033033.21
163 rdf:type schema:Person
164 sg:person.016650630117.44 schema:affiliation grid-institutes:grid.134936.a
165 schema:familyName Goyes Vallejos
166 schema:givenName Johana
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650630117.44
168 rdf:type schema:Person
169 sg:person.0706121233.04 schema:affiliation grid-institutes:grid.266515.3
170 schema:familyName Peterson
171 schema:givenName A. Townsend
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706121233.04
173 rdf:type schema:Person
174 sg:pub.10.1007/978-0-387-47796-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024361964
175 https://doi.org/10.1007/978-0-387-47796-1_3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/978-3-642-33709-3_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035838871
178 https://doi.org/10.1007/978-3-642-33709-3_36
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
181 https://doi.org/10.1007/s11263-015-0816-y
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/467154a schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215414
184 https://doi.org/10.1038/467154a
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/s41467-019-13993-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123915232
187 https://doi.org/10.1038/s41467-019-13993-7
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/s41467-020-14356-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124148859
190 https://doi.org/10.1038/s41467-020-14356-3
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/s41598-019-50795-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121472449
193 https://doi.org/10.1038/s41598-019-50795-9
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/s13007-017-0245-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092526471
196 https://doi.org/10.1186/s13007-017-0245-8
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.134936.a schema:alternateName Division of Biological Sciences, University of Missouri, Columbia, MO, USA
199 schema:name Biodiversity Institute, University of Kansas, Lawrence, KS, USA
200 Division of Biological Sciences, University of Missouri, Columbia, MO, USA
201 rdf:type schema:Organization
202 grid-institutes:grid.266515.3 schema:alternateName Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
203 schema:name Biodiversity Institute, University of Kansas, Lawrence, KS, USA
204 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
205 rdf:type schema:Organization
206 grid-institutes:grid.47894.36 schema:alternateName Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
207 schema:name Biodiversity Institute, University of Kansas, Lawrence, KS, USA
208 Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
209 Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...