Identifying Core Areas in a Species’ Range Using Temporal Suitability Analysis: an Example Using Little Bustards Tetrax Tetrax L. in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11

AUTHORS

Patrick E. Osborne, Susana Suárez-Seoane

ABSTRACT

Variations in habitat quality impact on breeding success, leading to strong selection pressure for the best sites to be occupied first during a population increase and last during a decline. Coupled with dispersal and metapopulation processes, the result is that snapshot surveys of wildlife distributions may fail to reveal core areas that conservation seeks to protect. At a local scale, territory occupancy is a good indicator of quality but data are not readily available to assess occupancy for rarer species, in remote areas, and over large spatial extents. We introduce temporal suitability analysis as a way to generate an analogue of occupancy from a single survey and illustrate it using data on the little bustard in Spain. We first used Generalised Additive Modelling (GAM) to build a predictive distribution model using Geographic Information System (GIS) coverages and satellite imagery, and then applied the model retrospectively to a time series of satellite images to produce one distribution map for each year. These annual maps differed in the extent of Spain predicted as suitable for little bustards. By overlaying the maps, we identified areas predicted as suitable in one to n years. We show that this temporal suitability map correlates with a conventional habitat suitability map based on a single year but contains extra information on hierarchical use of habitats and the lag between suitability and use. The technique may be applied at a variety of spatial scales to reveal changes in expected occupancy as land use or external factors determining land cover types vary over time. More... »

PAGES

3505-3518

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10531-006-9058-1

DOI

http://dx.doi.org/10.1007/s10531-006-9058-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011437072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "Centre for Environmental Sciences, School of Civil Engineering and the Environment University of Southampton, SO17 1BJ, Highfield, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborne", 
        "givenName": "Patrick E.", 
        "id": "sg:person.011701144407.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011701144407.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Area de Ecolog\u00eda, Facultad de Ciencias Biol\u00f3gicas y Ambientales, Universidad de Le\u00f3n, Campus de Vegazana, s/n. 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su\u00e1rez-Seoane", 
        "givenName": "Susana", 
        "id": "sg:person.014665004403.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665004403.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1046/j.1365-2656.1999.00343.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000689016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.2003.00914.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000759211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2002.00751.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001947597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.1995.09061466.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004015201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2001.00651.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004046099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-842x(02)02444-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007632849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(00)00354-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008451757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431169508954530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009722902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2001)082[2560:cibtsi]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009759659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3207(89)90005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010252595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3207(89)90005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010252595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3237182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011117270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011245392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2003.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011245392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3770(01)00161-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012482302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2001.00604.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019567883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1442-9993.2003.01305.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019786821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022787162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022787162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(99)00227-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023925940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:bioc.0000014468.71368.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025348460", 
          "https://doi.org/10.1023/b:bioc.0000014468.71368.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(00)00322-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028453092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021342611769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029812382", 
          "https://doi.org/10.1023/a:1021342611769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2656.2003.00758.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032906947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1037602011", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3121-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037602011", 
          "https://doi.org/10.1007/978-1-4757-3121-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3121-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037602011", 
          "https://doi.org/10.1007/978-1-4757-3121-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2664.2001.00647.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039407635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00204-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047492925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00204-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047492925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0021-8901.2001.00668.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047673741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047732557", 
          "https://doi.org/10.1007/bf01601953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01601953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047732557", 
          "https://doi.org/10.1007/bf01601953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00195-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048098727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00195-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048098727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0587.2003.03522.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050438126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021338510860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053485775", 
          "https://doi.org/10.1023/a:1021338510860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892997000088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053798761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892997000088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053798761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/282607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058592730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/284880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058595003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1934733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069658916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1935620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069659742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2404188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069913803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2404347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069913948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3808148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070461002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079933656", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11", 
    "datePublishedReg": "2007-11-01", 
    "description": "Variations in habitat quality impact on breeding success, leading to strong selection pressure for the best sites to be occupied first during a population increase and last during a decline. Coupled with dispersal and metapopulation processes, the result is that snapshot surveys of wildlife distributions may fail to reveal core areas that conservation seeks to protect. At a local scale, territory occupancy is a good indicator of quality but data are not readily available to assess occupancy for rarer species, in remote areas, and over large spatial extents. We introduce temporal suitability analysis as a way to generate an analogue of occupancy from a single survey and illustrate it using data on the little bustard in Spain. We first used Generalised Additive Modelling (GAM) to build a predictive distribution model using Geographic Information System (GIS) coverages and satellite imagery, and then applied the model retrospectively to a time series of satellite images to produce one distribution map for each year. These annual maps differed in the extent of Spain predicted as suitable for little bustards. By overlaying the maps, we identified areas predicted as suitable in one to n years. We show that this temporal suitability map correlates with a conventional habitat suitability map based on a single year but contains extra information on hierarchical use of habitats and the lag between suitability and use. The technique may be applied at a variety of spatial scales to reveal changes in expected occupancy as land use or external factors determining land cover types vary over time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10531-006-9058-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1128750", 
        "issn": [
          "0960-3115", 
          "1572-9710"
        ], 
        "name": "Biodiversity and Conservation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Identifying Core Areas in a Species\u2019 Range Using Temporal Suitability Analysis: an Example Using Little Bustards Tetrax Tetrax L. in Spain", 
    "pagination": "3505-3518", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "367daf1ae4f368046a9d18d4ae1e1ba462f4b595d9ca14ecb59914e7dde02883"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10531-006-9058-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011437072"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10531-006-9058-1", 
      "https://app.dimensions.ai/details/publication/pub.1011437072"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10531-006-9058-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10531-006-9058-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10531-006-9058-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10531-006-9058-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10531-006-9058-1'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10531-006-9058-1 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N3324514da03e46a7bb657c255702e413
4 schema:citation sg:pub.10.1007/978-1-4757-3121-7
5 sg:pub.10.1007/bf01601953
6 sg:pub.10.1023/a:1021338510860
7 sg:pub.10.1023/a:1021342611769
8 sg:pub.10.1023/b:bioc.0000014468.71368.35
9 https://app.dimensions.ai/details/publication/pub.1037602011
10 https://app.dimensions.ai/details/publication/pub.1079933656
11 https://doi.org/10.1016/0006-3207(89)90005-0
12 https://doi.org/10.1016/j.biocon.2003.09.001
13 https://doi.org/10.1016/j.ecolmodel.2003.08.006
14 https://doi.org/10.1016/s0304-3770(01)00161-9
15 https://doi.org/10.1016/s0304-3800(00)00322-7
16 https://doi.org/10.1016/s0304-3800(00)00354-9
17 https://doi.org/10.1016/s0304-3800(02)00195-3
18 https://doi.org/10.1016/s0304-3800(02)00204-1
19 https://doi.org/10.1016/s0304-3800(99)00227-6
20 https://doi.org/10.1016/s0966-842x(02)02444-7
21 https://doi.org/10.1017/s0376892997000088
22 https://doi.org/10.1034/j.1600-0587.2003.03522.x
23 https://doi.org/10.1046/j.0021-8901.2001.00668.x
24 https://doi.org/10.1046/j.1365-2656.1999.00343.x
25 https://doi.org/10.1046/j.1365-2656.2003.00758.x
26 https://doi.org/10.1046/j.1365-2664.2001.00604.x
27 https://doi.org/10.1046/j.1365-2664.2001.00647.x
28 https://doi.org/10.1046/j.1365-2664.2001.00651.x
29 https://doi.org/10.1046/j.1365-2664.2002.00751.x
30 https://doi.org/10.1046/j.1365-2699.2003.00914.x
31 https://doi.org/10.1046/j.1442-9993.2003.01305.x
32 https://doi.org/10.1046/j.1523-1739.1995.09061466.x
33 https://doi.org/10.1080/01431169508954530
34 https://doi.org/10.1086/282607
35 https://doi.org/10.1086/284880
36 https://doi.org/10.1890/0012-9658(2001)082[2560:cibtsi]2.0.co;2
37 https://doi.org/10.2307/1934733
38 https://doi.org/10.2307/1935620
39 https://doi.org/10.2307/2404188
40 https://doi.org/10.2307/2404347
41 https://doi.org/10.2307/3237182
42 https://doi.org/10.2307/3808148
43 schema:datePublished 2007-11
44 schema:datePublishedReg 2007-11-01
45 schema:description Variations in habitat quality impact on breeding success, leading to strong selection pressure for the best sites to be occupied first during a population increase and last during a decline. Coupled with dispersal and metapopulation processes, the result is that snapshot surveys of wildlife distributions may fail to reveal core areas that conservation seeks to protect. At a local scale, territory occupancy is a good indicator of quality but data are not readily available to assess occupancy for rarer species, in remote areas, and over large spatial extents. We introduce temporal suitability analysis as a way to generate an analogue of occupancy from a single survey and illustrate it using data on the little bustard in Spain. We first used Generalised Additive Modelling (GAM) to build a predictive distribution model using Geographic Information System (GIS) coverages and satellite imagery, and then applied the model retrospectively to a time series of satellite images to produce one distribution map for each year. These annual maps differed in the extent of Spain predicted as suitable for little bustards. By overlaying the maps, we identified areas predicted as suitable in one to n years. We show that this temporal suitability map correlates with a conventional habitat suitability map based on a single year but contains extra information on hierarchical use of habitats and the lag between suitability and use. The technique may be applied at a variety of spatial scales to reveal changes in expected occupancy as land use or external factors determining land cover types vary over time.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N9cc0d5aee7554d2cb8c1c4aa9bcdc162
50 Nc98de73b0a854f468f720dfc83940fdd
51 sg:journal.1128750
52 schema:name Identifying Core Areas in a Species’ Range Using Temporal Suitability Analysis: an Example Using Little Bustards Tetrax Tetrax L. in Spain
53 schema:pagination 3505-3518
54 schema:productId N43eb004995424b0f93256b6cabc8ba4f
55 N4bac716c6498475683afc0bfbc15fb27
56 N7b1b775cbb594381aeb92453d910867e
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011437072
58 https://doi.org/10.1007/s10531-006-9058-1
59 schema:sdDatePublished 2019-04-11T14:26
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N68dc5cd2ac5c40eda227ab569b494b82
62 schema:url http://link.springer.com/10.1007%2Fs10531-006-9058-1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N3324514da03e46a7bb657c255702e413 rdf:first sg:person.011701144407.94
67 rdf:rest N94a5b6f2d41c4ebd842457815c27e7e4
68 N43eb004995424b0f93256b6cabc8ba4f schema:name readcube_id
69 schema:value 367daf1ae4f368046a9d18d4ae1e1ba462f4b595d9ca14ecb59914e7dde02883
70 rdf:type schema:PropertyValue
71 N4bac716c6498475683afc0bfbc15fb27 schema:name doi
72 schema:value 10.1007/s10531-006-9058-1
73 rdf:type schema:PropertyValue
74 N68dc5cd2ac5c40eda227ab569b494b82 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N7b1b775cbb594381aeb92453d910867e schema:name dimensions_id
77 schema:value pub.1011437072
78 rdf:type schema:PropertyValue
79 N94a5b6f2d41c4ebd842457815c27e7e4 rdf:first sg:person.014665004403.14
80 rdf:rest rdf:nil
81 N9cc0d5aee7554d2cb8c1c4aa9bcdc162 schema:volumeNumber 16
82 rdf:type schema:PublicationVolume
83 Nc98de73b0a854f468f720dfc83940fdd schema:issueNumber 12
84 rdf:type schema:PublicationIssue
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
89 schema:name Geomatic Engineering
90 rdf:type schema:DefinedTerm
91 sg:journal.1128750 schema:issn 0960-3115
92 1572-9710
93 schema:name Biodiversity and Conservation
94 rdf:type schema:Periodical
95 sg:person.011701144407.94 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
96 schema:familyName Osborne
97 schema:givenName Patrick E.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011701144407.94
99 rdf:type schema:Person
100 sg:person.014665004403.14 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
101 schema:familyName Suárez-Seoane
102 schema:givenName Susana
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665004403.14
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4757-3121-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037602011
106 https://doi.org/10.1007/978-1-4757-3121-7
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf01601953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047732557
109 https://doi.org/10.1007/bf01601953
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1021338510860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053485775
112 https://doi.org/10.1023/a:1021338510860
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/a:1021342611769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029812382
115 https://doi.org/10.1023/a:1021342611769
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/b:bioc.0000014468.71368.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025348460
118 https://doi.org/10.1023/b:bioc.0000014468.71368.35
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1037602011 schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1079933656 schema:CreativeWork
122 https://doi.org/10.1016/0006-3207(89)90005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010252595
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.biocon.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022787162
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ecolmodel.2003.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011245392
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0304-3770(01)00161-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012482302
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0304-3800(00)00322-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028453092
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0304-3800(00)00354-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008451757
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0304-3800(02)00195-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048098727
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0304-3800(02)00204-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047492925
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0304-3800(99)00227-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023925940
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0966-842x(02)02444-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007632849
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/s0376892997000088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053798761
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1034/j.1600-0587.2003.03522.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050438126
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1046/j.0021-8901.2001.00668.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047673741
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1046/j.1365-2656.1999.00343.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000689016
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1046/j.1365-2656.2003.00758.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032906947
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1046/j.1365-2664.2001.00604.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019567883
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1046/j.1365-2664.2001.00647.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039407635
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1046/j.1365-2664.2001.00651.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004046099
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1046/j.1365-2664.2002.00751.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001947597
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1046/j.1365-2699.2003.00914.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000759211
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1046/j.1442-9993.2003.01305.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019786821
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1046/j.1523-1739.1995.09061466.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015201
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/01431169508954530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009722902
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1086/282607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058592730
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1086/284880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058595003
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1890/0012-9658(2001)082[2560:cibtsi]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009759659
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2307/1934733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069658916
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2307/1935620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069659742
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/2404188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069913803
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2307/2404347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069913948
181 rdf:type schema:CreativeWork
182 https://doi.org/10.2307/3237182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011117270
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2307/3808148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070461002
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.4807.b schema:alternateName University of Leon
187 schema:name Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n. 24071, León, Spain
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
190 schema:name Centre for Environmental Sciences, School of Civil Engineering and the Environment University of Southampton, SO17 1BJ, Highfield, Southampton, UK
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...