A simplified approach to derive Cleland model for enzymatic reactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03-03

AUTHORS

Ganesan Saraswathi, Tapobrata Panda, Tanmay Basak

ABSTRACT

Metabolic modeling can suggest which is the key enzyme activity that needs to be controlled or its activity enhanced for the required production of a metabolite in a pathway. It also helps to find possible drug targets (enzymes to be inhibited). In metabolic modeling, knowing the kinetics of the enzymes involved in a pathway is mandatory. Most enzymatic reactions involve multi-substrates and follow an ordered sequential or ping–pong mechanism. The kinetic parameters involved in the model are obtained by fitting experimental data using a model based on the mechanism. The Cleland model has been used for some years. The grouping of parameters, such as dissociation constant and Michaelis–Menten constant, makes the strategy meaningful and hence the Cleland model is still in use. Although other alternate methods, e.g., the King-Altman method, are available, derivation by determinants can be used to derive a rate expression for the sequential or ping–pong mechanism, they are tedious. Hence, a meaningful modification is suggested in this communication for deriving the enzyme mechanism which is based on Thilakavathi et al. (Biotech Lett 28:1889–1894, 2006) to obtain the Cleland model in an easier way. More... »

PAGES

785-789

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10529-013-1159-9

DOI

http://dx.doi.org/10.1007/s10529-013-1159-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042399015

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23455878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biochemical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Chemical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saraswathi", 
        "givenName": "Ganesan", 
        "id": "sg:person.01310647726.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310647726.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panda", 
        "givenName": "Tapobrata", 
        "id": "sg:person.01002553400.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002553400.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basak", 
        "givenName": "Tanmay", 
        "id": "sg:person.010222677117.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222677117.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10529-006-9172-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049151507", 
          "https://doi.org/10.1007/s10529-006-9172-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03-03", 
    "datePublishedReg": "2013-03-03", 
    "description": "Metabolic modeling can suggest which is the key enzyme activity that needs to be controlled or its activity enhanced for the required production of a metabolite in a pathway. It also helps to find possible drug targets (enzymes to be inhibited). In metabolic modeling, knowing the kinetics of the enzymes involved in a pathway is mandatory. Most enzymatic reactions involve multi-substrates and follow an ordered sequential or ping\u2013pong mechanism. The kinetic parameters involved in the model are obtained by fitting experimental data using a model based on the mechanism. The Cleland model has been used for some years. The grouping of parameters, such as dissociation constant and Michaelis\u2013Menten constant, makes the strategy meaningful and hence the Cleland model is still in use. Although other alternate methods, e.g., the King-Altman method, are available, derivation by determinants can be used to derive a rate expression for the sequential or ping\u2013pong mechanism, they are tedious. Hence, a meaningful modification is suggested in this communication for deriving the enzyme mechanism which is based on Thilakavathi et al. (Biotech Lett 28:1889\u20131894, 2006) to obtain the Cleland model in an easier way.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10529-013-1159-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289037", 
        "issn": [
          "0951-208X", 
          "1573-6784"
        ], 
        "name": "Biotechnology Letters", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "most enzymatic reactions", 
      "enzymatic reaction", 
      "ping-pong mechanism", 
      "Michaelis-Menten constant", 
      "reaction", 
      "kinetic parameters", 
      "rate expression", 
      "enzyme mechanism", 
      "drug targets", 
      "kinetics", 
      "mechanism", 
      "experimental data", 
      "grouping of parameters", 
      "dissociation", 
      "constants", 
      "meaningful modifications", 
      "modification", 
      "metabolic modeling", 
      "key enzyme activities", 
      "enzyme activity", 
      "activity", 
      "metabolites", 
      "pathway", 
      "possible drug targets", 
      "enzyme", 
      "parameters", 
      "alternate method", 
      "method", 
      "King-Altman method", 
      "et al", 
      "al", 
      "easy way", 
      "modeling", 
      "required production", 
      "production", 
      "target", 
      "model", 
      "data", 
      "strategies", 
      "use", 
      "expression", 
      "way", 
      "simplified approach", 
      "approach", 
      "years", 
      "grouping", 
      "derivation", 
      "determinants", 
      "communication", 
      "Cleland model", 
      "Thilakavathi et al"
    ], 
    "name": "A simplified approach to derive Cleland model for enzymatic reactions", 
    "pagination": "785-789", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042399015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10529-013-1159-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23455878"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10529-013-1159-9", 
      "https://app.dimensions.ai/details/publication/pub.1042399015"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_606.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10529-013-1159-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10529-013-1159-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10529-013-1159-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10529-013-1159-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10529-013-1159-9'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      83 URIs      74 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10529-013-1159-9 schema:about N18df9b64fbdd419b99faaa69bfa568aa
2 N4bd9426ec7ce4317ae900402e71e452f
3 N50b7b0b0552e43a89b47435388834892
4 N8804905a1d144660b041e2dbd3185a5b
5 Nf7998e8eeb574cbe9a951224d60baee9
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author N0dea85ea595744dca9e082fa93b2fd58
9 schema:citation sg:pub.10.1007/s10529-006-9172-x
10 schema:datePublished 2013-03-03
11 schema:datePublishedReg 2013-03-03
12 schema:description Metabolic modeling can suggest which is the key enzyme activity that needs to be controlled or its activity enhanced for the required production of a metabolite in a pathway. It also helps to find possible drug targets (enzymes to be inhibited). In metabolic modeling, knowing the kinetics of the enzymes involved in a pathway is mandatory. Most enzymatic reactions involve multi-substrates and follow an ordered sequential or ping–pong mechanism. The kinetic parameters involved in the model are obtained by fitting experimental data using a model based on the mechanism. The Cleland model has been used for some years. The grouping of parameters, such as dissociation constant and Michaelis–Menten constant, makes the strategy meaningful and hence the Cleland model is still in use. Although other alternate methods, e.g., the King-Altman method, are available, derivation by determinants can be used to derive a rate expression for the sequential or ping–pong mechanism, they are tedious. Hence, a meaningful modification is suggested in this communication for deriving the enzyme mechanism which is based on Thilakavathi et al. (Biotech Lett 28:1889–1894, 2006) to obtain the Cleland model in an easier way.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N2b1afd8b3b02411ea60d4ee5978ca2c9
17 N2ec28ec5ca494a619cf2c271f1678d58
18 sg:journal.1289037
19 schema:keywords Cleland model
20 King-Altman method
21 Michaelis-Menten constant
22 Thilakavathi et al
23 activity
24 al
25 alternate method
26 approach
27 communication
28 constants
29 data
30 derivation
31 determinants
32 dissociation
33 drug targets
34 easy way
35 enzymatic reaction
36 enzyme
37 enzyme activity
38 enzyme mechanism
39 et al
40 experimental data
41 expression
42 grouping
43 grouping of parameters
44 key enzyme activities
45 kinetic parameters
46 kinetics
47 meaningful modifications
48 mechanism
49 metabolic modeling
50 metabolites
51 method
52 model
53 modeling
54 modification
55 most enzymatic reactions
56 parameters
57 pathway
58 ping-pong mechanism
59 possible drug targets
60 production
61 rate expression
62 reaction
63 required production
64 simplified approach
65 strategies
66 target
67 use
68 way
69 years
70 schema:name A simplified approach to derive Cleland model for enzymatic reactions
71 schema:pagination 785-789
72 schema:productId N4d539be515944ced84125c9915818038
73 N8a3553280e7a4b19a0c7aa04d2653baa
74 Nb3f5ac2bd4834be2a0fcfc71a2f38c61
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042399015
76 https://doi.org/10.1007/s10529-013-1159-9
77 schema:sdDatePublished 2022-01-01T18:30
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N990a45dbabf54e8781a93d84883784ac
80 schema:url https://doi.org/10.1007/s10529-013-1159-9
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0dea85ea595744dca9e082fa93b2fd58 rdf:first sg:person.01310647726.82
85 rdf:rest N6061954e38da4b2d8a54e992ad75929e
86 N18df9b64fbdd419b99faaa69bfa568aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Kinetics
88 rdf:type schema:DefinedTerm
89 N2b1afd8b3b02411ea60d4ee5978ca2c9 schema:issueNumber 5
90 rdf:type schema:PublicationIssue
91 N2ec28ec5ca494a619cf2c271f1678d58 schema:volumeNumber 35
92 rdf:type schema:PublicationVolume
93 N4bd9426ec7ce4317ae900402e71e452f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Models, Biological
95 rdf:type schema:DefinedTerm
96 N4d539be515944ced84125c9915818038 schema:name dimensions_id
97 schema:value pub.1042399015
98 rdf:type schema:PropertyValue
99 N50b7b0b0552e43a89b47435388834892 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Models, Chemical
101 rdf:type schema:DefinedTerm
102 N6061954e38da4b2d8a54e992ad75929e rdf:first sg:person.01002553400.17
103 rdf:rest Na709a1c66fe543f69c3735ff1341f0f6
104 N8804905a1d144660b041e2dbd3185a5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Biochemical Phenomena
106 rdf:type schema:DefinedTerm
107 N8a3553280e7a4b19a0c7aa04d2653baa schema:name pubmed_id
108 schema:value 23455878
109 rdf:type schema:PropertyValue
110 N990a45dbabf54e8781a93d84883784ac schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Na709a1c66fe543f69c3735ff1341f0f6 rdf:first sg:person.010222677117.68
113 rdf:rest rdf:nil
114 Nb3f5ac2bd4834be2a0fcfc71a2f38c61 schema:name doi
115 schema:value 10.1007/s10529-013-1159-9
116 rdf:type schema:PropertyValue
117 Nf7998e8eeb574cbe9a951224d60baee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Enzymes
119 rdf:type schema:DefinedTerm
120 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biological Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
124 schema:name Biochemistry and Cell Biology
125 rdf:type schema:DefinedTerm
126 sg:journal.1289037 schema:issn 0951-208X
127 1573-6784
128 schema:name Biotechnology Letters
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.01002553400.17 schema:affiliation grid-institutes:grid.417969.4
132 schema:familyName Panda
133 schema:givenName Tapobrata
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002553400.17
135 rdf:type schema:Person
136 sg:person.010222677117.68 schema:affiliation grid-institutes:grid.417969.4
137 schema:familyName Basak
138 schema:givenName Tanmay
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222677117.68
140 rdf:type schema:Person
141 sg:person.01310647726.82 schema:affiliation grid-institutes:grid.417969.4
142 schema:familyName Saraswathi
143 schema:givenName Ganesan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310647726.82
145 rdf:type schema:Person
146 sg:pub.10.1007/s10529-006-9172-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049151507
147 https://doi.org/10.1007/s10529-006-9172-x
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.417969.4 schema:alternateName Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India
150 schema:name Department of Chemical Engineering, Indian Institute of Technology Madras, 600036, Chennai, Tamilnadu, India
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...