Challenges in X-Ray Medical Diagnosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

B. M. Kanter, B. V. Artemiev, L. V. Vladimirov, I. B. Artemyev

ABSTRACT

This article analyzes current challenges in medical X-ray diagnosis. The design of a tunnel-type ionization chamber for recording dose and dose power over a wide range of bremsstrahlung radiation energies is discussed. We address questions related to the standardization of apparatus and the creation of a universal digital platform for X-ray radiotherapy instruments as the basis for building state-of-the-art, productive, safe, and reliable radiotherapy instruments with different operating modes in terms of power supply voltage and power, from kilowatts to tens of kilowatts. The article also considers the state of X-ray diagnosis in general and the quality of X-ray apparatus; the challenge of measuring technogenic radiation doses to patients; the use of digital technologies providing digital images of quality no less than and even greater than that of film-based images combined with significant reductions in effective doses during investigations, and the advantages of computer processing; the treatment of nosological groups of diseases by radiotherapy; the needs for radiotherapy systems based on medical linear electron accelerators; radiation safety for staff and the population; small-scale, mobile devices for X-ray investigations in patients; and legal and technical aspects. A special program for assessing the detective quantum efficiency of dynamic digital X-ray image detectors is proposed. More... »

PAGES

410-415

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10527-017-9667-x

DOI

http://dx.doi.org/10.1007/s10527-017-9667-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084025144


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "ZAO RII MSIA \u201cSpectrum\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanter", 
        "givenName": "B. M.", 
        "id": "sg:person.01025160401.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025160401.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ZAO RII MSIA \u201cSpectrum\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artemiev", 
        "givenName": "B. V.", 
        "id": "sg:person.011225136365.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011225136365.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ZAO RII MSIA \u201cSpectrum\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vladimirov", 
        "givenName": "L. V.", 
        "id": "sg:person.016446372267.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446372267.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ZAO RII MSIA \u201cSpectrum\u201d, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artemyev", 
        "givenName": "I. B.", 
        "id": "sg:person.014150432733.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014150432733.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "This article analyzes current challenges in medical X-ray diagnosis. The design of a tunnel-type ionization chamber for recording dose and dose power over a wide range of bremsstrahlung radiation energies is discussed. We address questions related to the standardization of apparatus and the creation of a universal digital platform for X-ray radiotherapy instruments as the basis for building state-of-the-art, productive, safe, and reliable radiotherapy instruments with different operating modes in terms of power supply voltage and power, from kilowatts to tens of kilowatts. The article also considers the state of X-ray diagnosis in general and the quality of X-ray apparatus; the challenge of measuring technogenic radiation doses to patients; the use of digital technologies providing digital images of quality no less than and even greater than that of film-based images combined with significant reductions in effective doses during investigations, and the advantages of computer processing; the treatment of nosological groups of diseases by radiotherapy; the needs for radiotherapy systems based on medical linear electron accelerators; radiation safety for staff and the population; small-scale, mobile devices for X-ray investigations in patients; and legal and technical aspects. A special program for assessing the detective quantum efficiency of dynamic digital X-ray image detectors is proposed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10527-017-9667-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327370", 
        "issn": [
          "0006-3398", 
          "1573-8256"
        ], 
        "name": "Biomedical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Challenges in X-Ray Medical Diagnosis", 
    "pagination": "410-415", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "324a28d93b53b1b86441974c8186982c59daa78de9d30b51797cee8b32694f31"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10527-017-9667-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084025144"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10527-017-9667-x", 
      "https://app.dimensions.ai/details/publication/pub.1084025144"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10527-017-9667-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10527-017-9667-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10527-017-9667-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10527-017-9667-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10527-017-9667-x'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10527-017-9667-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3b85e659aa744aa4a5b3a8f878e643ef
4 schema:datePublished 2017-03
5 schema:datePublishedReg 2017-03-01
6 schema:description This article analyzes current challenges in medical X-ray diagnosis. The design of a tunnel-type ionization chamber for recording dose and dose power over a wide range of bremsstrahlung radiation energies is discussed. We address questions related to the standardization of apparatus and the creation of a universal digital platform for X-ray radiotherapy instruments as the basis for building state-of-the-art, productive, safe, and reliable radiotherapy instruments with different operating modes in terms of power supply voltage and power, from kilowatts to tens of kilowatts. The article also considers the state of X-ray diagnosis in general and the quality of X-ray apparatus; the challenge of measuring technogenic radiation doses to patients; the use of digital technologies providing digital images of quality no less than and even greater than that of film-based images combined with significant reductions in effective doses during investigations, and the advantages of computer processing; the treatment of nosological groups of diseases by radiotherapy; the needs for radiotherapy systems based on medical linear electron accelerators; radiation safety for staff and the population; small-scale, mobile devices for X-ray investigations in patients; and legal and technical aspects. A special program for assessing the detective quantum efficiency of dynamic digital X-ray image detectors is proposed.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N40329828c4df43c1b84473826a5a3d08
11 Ne236ecaf426f48eaae2f9938e0ab1599
12 sg:journal.1327370
13 schema:name Challenges in X-Ray Medical Diagnosis
14 schema:pagination 410-415
15 schema:productId N5ec043278616475eb136b13adc5e11db
16 N705a4a5df5794636a2dbe938abc4bf90
17 Nac5940bf8de14deab8a775d7bf53d44b
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025144
19 https://doi.org/10.1007/s10527-017-9667-x
20 schema:sdDatePublished 2019-04-11T09:33
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nd377692c035140fb903d77f20bec843d
23 schema:url https://link.springer.com/10.1007%2Fs10527-017-9667-x
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N073cd850163e40cebc9c3225d56938f7 rdf:first sg:person.016446372267.58
28 rdf:rest N1c48b25b7c54425fa8613e273f7b1770
29 N1c48b25b7c54425fa8613e273f7b1770 rdf:first sg:person.014150432733.41
30 rdf:rest rdf:nil
31 N3b85e659aa744aa4a5b3a8f878e643ef rdf:first sg:person.01025160401.88
32 rdf:rest Na590f0cd5c044921b480b19082466c37
33 N40329828c4df43c1b84473826a5a3d08 schema:volumeNumber 50
34 rdf:type schema:PublicationVolume
35 N5ec043278616475eb136b13adc5e11db schema:name doi
36 schema:value 10.1007/s10527-017-9667-x
37 rdf:type schema:PropertyValue
38 N705a4a5df5794636a2dbe938abc4bf90 schema:name dimensions_id
39 schema:value pub.1084025144
40 rdf:type schema:PropertyValue
41 Na2332d9d5fc0444eb317d4bb18caad42 schema:name ZAO RII MSIA “Spectrum”, Moscow, Russia
42 rdf:type schema:Organization
43 Na590f0cd5c044921b480b19082466c37 rdf:first sg:person.011225136365.59
44 rdf:rest N073cd850163e40cebc9c3225d56938f7
45 Nac5940bf8de14deab8a775d7bf53d44b schema:name readcube_id
46 schema:value 324a28d93b53b1b86441974c8186982c59daa78de9d30b51797cee8b32694f31
47 rdf:type schema:PropertyValue
48 Nd377692c035140fb903d77f20bec843d schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Ne236ecaf426f48eaae2f9938e0ab1599 schema:issueNumber 6
51 rdf:type schema:PublicationIssue
52 Ne599320f585048ac8862b5c45db2280d schema:name ZAO RII MSIA “Spectrum”, Moscow, Russia
53 rdf:type schema:Organization
54 Ne994efdb1b6f4770903d37a97153c748 schema:name ZAO RII MSIA “Spectrum”, Moscow, Russia
55 rdf:type schema:Organization
56 Need069bd362a4aa19253e9663d438338 schema:name ZAO RII MSIA “Spectrum”, Moscow, Russia
57 rdf:type schema:Organization
58 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
62 schema:name Other Physical Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1327370 schema:issn 0006-3398
65 1573-8256
66 schema:name Biomedical Engineering
67 rdf:type schema:Periodical
68 sg:person.01025160401.88 schema:affiliation Need069bd362a4aa19253e9663d438338
69 schema:familyName Kanter
70 schema:givenName B. M.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025160401.88
72 rdf:type schema:Person
73 sg:person.011225136365.59 schema:affiliation Na2332d9d5fc0444eb317d4bb18caad42
74 schema:familyName Artemiev
75 schema:givenName B. V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011225136365.59
77 rdf:type schema:Person
78 sg:person.014150432733.41 schema:affiliation Ne599320f585048ac8862b5c45db2280d
79 schema:familyName Artemyev
80 schema:givenName I. B.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014150432733.41
82 rdf:type schema:Person
83 sg:person.016446372267.58 schema:affiliation Ne994efdb1b6f4770903d37a97153c748
84 schema:familyName Vladimirov
85 schema:givenName L. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016446372267.58
87 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...