An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-24

AUTHORS

Boris Čulina

ABSTRACT

In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us (the homogeneity of space), all directions are the same to us (the isotropy of space) and all units of length we use to create geometric figures are the same to us (the scale invariance of space). On the other hand, through the process of algebraic simplification, this system of axioms directly provides the Weyl’s system of axioms for Euclidean geometry. The system of axioms, together with its a priori interpretation, offers new views to philosophy and pedagogy of mathematics: (1) it supports the thesis that Euclidean geometry is a priori, (2) it supports the thesis that in modern mathematics the Weyl’s system of axioms is dominant to the Euclid’s system because it reflects the a priori underlying symmetries, (3) it gives a new and promising approach to learn geometry which, through the Weyl’s system of axioms, leads from the essential geometric symmetry principles of the mathematical nature directly to modern mathematics. More... »

PAGES

155-180

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10516-017-9358-y

DOI

http://dx.doi.org/10.1007/s10516-017-9358-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091322138


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/22", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Philosophy and Religious Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Philosophy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Applied Sciences Velika Gorica, Zagreba\u010dka cesta 5, Velika Gorica, Croatia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, University of Applied Sciences Velika Gorica, Zagreba\u010dka cesta 5, Velika Gorica, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u010culina", 
        "givenName": "Boris", 
        "id": "sg:person.07405475773.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405475773.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-43111-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048210136", 
          "https://doi.org/10.1007/978-3-662-43111-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-24", 
    "datePublishedReg": "2017-08-24", 
    "description": "In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us (the homogeneity of space), all directions are the same to us (the isotropy of space) and all units of length we use to create geometric figures are the same to us (the scale invariance of space). On the other hand, through the process of algebraic simplification, this system of axioms directly provides the Weyl\u2019s system of axioms for Euclidean geometry. The system of axioms, together with its a priori interpretation, offers new views to philosophy and pedagogy of mathematics: (1) it supports the thesis that Euclidean geometry is a priori, (2) it supports the thesis that in modern mathematics the Weyl\u2019s system of axioms is dominant to the Euclid\u2019s system because it reflects the a priori underlying symmetries, (3) it gives a new and promising approach to learn geometry which, through the Weyl\u2019s system of axioms, leads from the essential geometric symmetry principles of the mathematical nature directly to modern mathematics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10516-017-9358-y", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136171", 
        "issn": [
          "1122-1151", 
          "1572-8390"
        ], 
        "name": "Axiomathes", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "Euclidean geometry", 
      "symmetry principle", 
      "modern mathematics", 
      "system of axioms", 
      "Weyl systems", 
      "elementary systems", 
      "pedagogy of mathematics", 
      "mathematical nature", 
      "algebraic simplification", 
      "Geometry Based", 
      "mathematics", 
      "Euclid\u2019s system", 
      "geometric figures", 
      "geometry", 
      "unit of length", 
      "axioms", 
      "symmetry", 
      "principles", 
      "system", 
      "simplification", 
      "space", 
      "approach", 
      "new view", 
      "direction", 
      "Based", 
      "interpretation", 
      "promising approach", 
      "length", 
      "nature", 
      "hand", 
      "process", 
      "view", 
      "figures", 
      "units", 
      "thesis", 
      "place", 
      "article I", 
      "philosophy", 
      "pedagogy"
    ], 
    "name": "An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles", 
    "pagination": "155-180", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091322138"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10516-017-9358-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10516-017-9358-y", 
      "https://app.dimensions.ai/details/publication/pub.1091322138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10516-017-9358-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10516-017-9358-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10516-017-9358-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10516-017-9358-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10516-017-9358-y'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      66 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10516-017-9358-y schema:about anzsrc-for:17
2 anzsrc-for:1702
3 anzsrc-for:22
4 anzsrc-for:2203
5 schema:author N8b6b62fd86cf414cb895d1b693c9d8c9
6 schema:citation sg:pub.10.1007/978-3-662-43111-5
7 schema:datePublished 2017-08-24
8 schema:datePublishedReg 2017-08-24
9 schema:description In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us (the homogeneity of space), all directions are the same to us (the isotropy of space) and all units of length we use to create geometric figures are the same to us (the scale invariance of space). On the other hand, through the process of algebraic simplification, this system of axioms directly provides the Weyl’s system of axioms for Euclidean geometry. The system of axioms, together with its a priori interpretation, offers new views to philosophy and pedagogy of mathematics: (1) it supports the thesis that Euclidean geometry is a priori, (2) it supports the thesis that in modern mathematics the Weyl’s system of axioms is dominant to the Euclid’s system because it reflects the a priori underlying symmetries, (3) it gives a new and promising approach to learn geometry which, through the Weyl’s system of axioms, leads from the essential geometric symmetry principles of the mathematical nature directly to modern mathematics.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N02e723fbe11a457393e882121bb85cf0
13 Ndf533e4d3b95479eae4731f655ee05b9
14 sg:journal.1136171
15 schema:keywords Based
16 Euclidean geometry
17 Euclid’s system
18 Geometry Based
19 Weyl systems
20 algebraic simplification
21 approach
22 article I
23 axioms
24 direction
25 elementary systems
26 figures
27 geometric figures
28 geometry
29 hand
30 interpretation
31 length
32 mathematical nature
33 mathematics
34 modern mathematics
35 nature
36 new view
37 pedagogy
38 pedagogy of mathematics
39 philosophy
40 place
41 principles
42 process
43 promising approach
44 simplification
45 space
46 symmetry
47 symmetry principle
48 system
49 system of axioms
50 thesis
51 unit of length
52 units
53 view
54 schema:name An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles
55 schema:pagination 155-180
56 schema:productId N8a3913b4591f48b3bccf8368fd966902
57 N90376f061aac4265bcef8c535b4b7155
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091322138
59 https://doi.org/10.1007/s10516-017-9358-y
60 schema:sdDatePublished 2022-12-01T06:36
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0761e07ee38c4fbd81e656382b3541ef
63 schema:url https://doi.org/10.1007/s10516-017-9358-y
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N02e723fbe11a457393e882121bb85cf0 schema:volumeNumber 28
68 rdf:type schema:PublicationVolume
69 N0761e07ee38c4fbd81e656382b3541ef schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N8a3913b4591f48b3bccf8368fd966902 schema:name dimensions_id
72 schema:value pub.1091322138
73 rdf:type schema:PropertyValue
74 N8b6b62fd86cf414cb895d1b693c9d8c9 rdf:first sg:person.07405475773.69
75 rdf:rest rdf:nil
76 N90376f061aac4265bcef8c535b4b7155 schema:name doi
77 schema:value 10.1007/s10516-017-9358-y
78 rdf:type schema:PropertyValue
79 Ndf533e4d3b95479eae4731f655ee05b9 schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
82 schema:name Psychology and Cognitive Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
85 schema:name Cognitive Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:22 schema:inDefinedTermSet anzsrc-for:
88 schema:name Philosophy and Religious Studies
89 rdf:type schema:DefinedTerm
90 anzsrc-for:2203 schema:inDefinedTermSet anzsrc-for:
91 schema:name Philosophy
92 rdf:type schema:DefinedTerm
93 sg:journal.1136171 schema:issn 1122-1151
94 1572-8390
95 schema:name Axiomathes
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.07405475773.69 schema:affiliation grid-institutes:None
99 schema:familyName Čulina
100 schema:givenName Boris
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405475773.69
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-662-43111-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048210136
104 https://doi.org/10.1007/978-3-662-43111-5
105 rdf:type schema:CreativeWork
106 grid-institutes:None schema:alternateName Department of Mathematics, University of Applied Sciences Velika Gorica, Zagrebačka cesta 5, Velika Gorica, Croatia
107 schema:name Department of Mathematics, University of Applied Sciences Velika Gorica, Zagrebačka cesta 5, Velika Gorica, Croatia
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...