Learning gas distribution models using sparse Gaussian process mixtures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-03-17

AUTHORS

Cyrill Stachniss, Christian Plagemann, Achim J. Lilienthal

ABSTRACT

In this paper, we consider the problem of learning two-dimensional spatial models of gas distributions. To build models of gas distributions that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We formulate this task as a regression problem. To deal with the specific properties of gas distributions, we propose a sparse Gaussian process mixture model, which allows us to accurately represent the smooth background signal and the areas with patches of high concentrations. We furthermore integrate the sparsification of the training data into an EM procedure that we apply for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. The experiments demonstrate that our technique is well-suited for predicting gas concentrations at new query locations and that it outperforms alternative and previously proposed methods in robotics. More... »

PAGES

187-202

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10514-009-9111-5

DOI

http://dx.doi.org/10.1007/s10514-009-9111-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001526511


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, University of Freiburg, Georges Koehler Allee 79, 79110, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Dept. of Computer Science, University of Freiburg, Georges Koehler Allee 79, 79110, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stachniss", 
        "givenName": "Cyrill", 
        "id": "sg:person.015152144445.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Dept., Stanford University, 353 Serra Mall, 94305-9010, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Computer Science Dept., Stanford University, 353 Serra Mall, 94305-9010, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plagemann", 
        "givenName": "Christian", 
        "id": "sg:person.013622620341.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622620341.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AASS Research Institute, University of \u00d6rebro, Fakultetsgatan 1, 70182, \u00d6rebro, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.15895.30", 
          "name": [
            "AASS Research Institute, University of \u00d6rebro, Fakultetsgatan 1, 70182, \u00d6rebro, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lilienthal", 
        "givenName": "Achim J.", 
        "id": "sg:person.012516624677.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516624677.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10514-006-7101-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014842200", 
          "https://doi.org/10.1007/s10514-006-7101-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-8258-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018866511", 
          "https://doi.org/10.1007/s10994-006-8258-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10514-006-9043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025700617", 
          "https://doi.org/10.1007/s10514-006-9043-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87481-2_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019546544", 
          "https://doi.org/10.1007/978-3-540-87481-2_14"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03-17", 
    "datePublishedReg": "2009-03-17", 
    "description": "In this paper, we consider the problem of learning two-dimensional spatial models of gas distributions. To build models of gas distributions that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We formulate this task as a regression problem. To deal with the specific properties of gas distributions, we propose a sparse Gaussian process mixture model, which allows us to accurately represent the smooth background signal and the areas with patches of high concentrations. We furthermore integrate the sparsification of the training data into an EM procedure that we apply for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. The experiments demonstrate that our technique is well-suited for predicting gas concentrations at new query locations and that it outperforms alternative and previously proposed methods in robotics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10514-009-9111-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031086", 
        "issn": [
          "0929-5593", 
          "1573-7527"
        ], 
        "name": "Autonomous Robots", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "query location", 
      "real mobile robot", 
      "gas distribution", 
      "Gaussian process mixture model", 
      "gas concentration", 
      "Gaussian process mixture", 
      "gas distribution models", 
      "mobile robot", 
      "training data", 
      "regression problems", 
      "challenging task", 
      "two-dimensional spatial model", 
      "mixture model", 
      "process mixture", 
      "task", 
      "chaotic nature", 
      "electronic nose", 
      "EM procedure", 
      "mixture components", 
      "robot", 
      "robotics", 
      "specific properties", 
      "gas dispersal", 
      "dataset", 
      "sparsification", 
      "spatial model", 
      "distribution model", 
      "background signal", 
      "gating function", 
      "model", 
      "distribution", 
      "problem", 
      "properties", 
      "location", 
      "mixture", 
      "signals", 
      "concentration", 
      "technique", 
      "experiments", 
      "method", 
      "high concentrations", 
      "data", 
      "components", 
      "approach", 
      "area", 
      "function", 
      "procedure", 
      "patches", 
      "nature", 
      "nose", 
      "dispersal", 
      "paper"
    ], 
    "name": "Learning gas distribution models using sparse Gaussian process mixtures", 
    "pagination": "187-202", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001526511"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10514-009-9111-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10514-009-9111-5", 
      "https://app.dimensions.ai/details/publication/pub.1001526511"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10514-009-9111-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10514-009-9111-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10514-009-9111-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10514-009-9111-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10514-009-9111-5'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      80 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10514-009-9111-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndef4fad14e6a4fa3916886d0ce6c1bb8
4 schema:citation sg:pub.10.1007/978-3-540-87481-2_14
5 sg:pub.10.1007/s10514-006-7101-4
6 sg:pub.10.1007/s10514-006-9043-2
7 sg:pub.10.1007/s10994-006-8258-y
8 schema:datePublished 2009-03-17
9 schema:datePublishedReg 2009-03-17
10 schema:description In this paper, we consider the problem of learning two-dimensional spatial models of gas distributions. To build models of gas distributions that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We formulate this task as a regression problem. To deal with the specific properties of gas distributions, we propose a sparse Gaussian process mixture model, which allows us to accurately represent the smooth background signal and the areas with patches of high concentrations. We furthermore integrate the sparsification of the training data into an EM procedure that we apply for learning the mixture components and the gating function. Our approach has been implemented and tested using datasets recorded with a real mobile robot equipped with an electronic nose. The experiments demonstrate that our technique is well-suited for predicting gas concentrations at new query locations and that it outperforms alternative and previously proposed methods in robotics.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N66922159c61446bca9620bf2bd4c0566
14 Nc4be211921e9479988820c99f194b861
15 sg:journal.1031086
16 schema:keywords EM procedure
17 Gaussian process mixture
18 Gaussian process mixture model
19 approach
20 area
21 background signal
22 challenging task
23 chaotic nature
24 components
25 concentration
26 data
27 dataset
28 dispersal
29 distribution
30 distribution model
31 electronic nose
32 experiments
33 function
34 gas concentration
35 gas dispersal
36 gas distribution
37 gas distribution models
38 gating function
39 high concentrations
40 location
41 method
42 mixture
43 mixture components
44 mixture model
45 mobile robot
46 model
47 nature
48 nose
49 paper
50 patches
51 problem
52 procedure
53 process mixture
54 properties
55 query location
56 real mobile robot
57 regression problems
58 robot
59 robotics
60 signals
61 sparsification
62 spatial model
63 specific properties
64 task
65 technique
66 training data
67 two-dimensional spatial model
68 schema:name Learning gas distribution models using sparse Gaussian process mixtures
69 schema:pagination 187-202
70 schema:productId N0d78d0ee468b4f558836e5e9ced4e4dc
71 N704104a23e57456cad1b6b70bc2376c8
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001526511
73 https://doi.org/10.1007/s10514-009-9111-5
74 schema:sdDatePublished 2022-12-01T06:27
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N14f3ee16e771418ca6a2ca275895fea3
77 schema:url https://doi.org/10.1007/s10514-009-9111-5
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N09e056de7e1c4955b2d4cb578a65f055 rdf:first sg:person.012516624677.44
82 rdf:rest rdf:nil
83 N0d78d0ee468b4f558836e5e9ced4e4dc schema:name doi
84 schema:value 10.1007/s10514-009-9111-5
85 rdf:type schema:PropertyValue
86 N14f3ee16e771418ca6a2ca275895fea3 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N4f24dcc539bb4ab38eb3346fb2f872dd rdf:first sg:person.013622620341.59
89 rdf:rest N09e056de7e1c4955b2d4cb578a65f055
90 N66922159c61446bca9620bf2bd4c0566 schema:volumeNumber 26
91 rdf:type schema:PublicationVolume
92 N704104a23e57456cad1b6b70bc2376c8 schema:name dimensions_id
93 schema:value pub.1001526511
94 rdf:type schema:PropertyValue
95 Nc4be211921e9479988820c99f194b861 schema:issueNumber 2-3
96 rdf:type schema:PublicationIssue
97 Ndef4fad14e6a4fa3916886d0ce6c1bb8 rdf:first sg:person.015152144445.37
98 rdf:rest N4f24dcc539bb4ab38eb3346fb2f872dd
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:journal.1031086 schema:issn 0929-5593
106 1573-7527
107 schema:name Autonomous Robots
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.012516624677.44 schema:affiliation grid-institutes:grid.15895.30
111 schema:familyName Lilienthal
112 schema:givenName Achim J.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516624677.44
114 rdf:type schema:Person
115 sg:person.013622620341.59 schema:affiliation grid-institutes:grid.168010.e
116 schema:familyName Plagemann
117 schema:givenName Christian
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013622620341.59
119 rdf:type schema:Person
120 sg:person.015152144445.37 schema:affiliation grid-institutes:grid.5963.9
121 schema:familyName Stachniss
122 schema:givenName Cyrill
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37
124 rdf:type schema:Person
125 sg:pub.10.1007/978-3-540-87481-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019546544
126 https://doi.org/10.1007/978-3-540-87481-2_14
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10514-006-7101-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014842200
129 https://doi.org/10.1007/s10514-006-7101-4
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10514-006-9043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025700617
132 https://doi.org/10.1007/s10514-006-9043-2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10994-006-8258-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018866511
135 https://doi.org/10.1007/s10994-006-8258-y
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.15895.30 schema:alternateName AASS Research Institute, University of Örebro, Fakultetsgatan 1, 70182, Örebro, Sweden
138 schema:name AASS Research Institute, University of Örebro, Fakultetsgatan 1, 70182, Örebro, Sweden
139 rdf:type schema:Organization
140 grid-institutes:grid.168010.e schema:alternateName Computer Science Dept., Stanford University, 353 Serra Mall, 94305-9010, Stanford, CA, USA
141 schema:name Computer Science Dept., Stanford University, 353 Serra Mall, 94305-9010, Stanford, CA, USA
142 rdf:type schema:Organization
143 grid-institutes:grid.5963.9 schema:alternateName Dept. of Computer Science, University of Freiburg, Georges Koehler Allee 79, 79110, Freiburg, Germany
144 schema:name Dept. of Computer Science, University of Freiburg, Georges Koehler Allee 79, 79110, Freiburg, Germany
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...