Effect of the VVR-SM neutron spectrum on the radioactivity and color of natural topazes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03-05

AUTHORS

S. A. Baitelesov, E. M. Ibragimova, F. R. Kungurov, U. S. Salikhbaev

ABSTRACT

The neutron flux density from 0.025 eV to 12 MeV has been measured experimentally in all channels of the VVR-SM core by the activation method using threshold monitors (Au, Ni, Fe. Ti, Mg, Y). Comparing with a calculation of the neutron flux density at different energy using the IRT-2D computer code showed agreement to within 5%. The distribution of the neutron fluxes and spectra in the core, which is of practical utility for radiation technologies, was obtained. A series of irradiations has been conducted and experimental dependences of the irradiation time on the channel position in the core as well as on the size of the stones for obtaining a standard light blue and dark blue color have been obtained. The irradiation conditions making it possible to lower the induced radioactivity of the minerals three-fold as a result of increasing the ratio of the fast to thermal neutron fluxes are found. More... »

PAGES

355-361

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10512-011-9368-6

DOI

http://dx.doi.org/10.1007/s10512-011-9368-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010090212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.443859.7", 
          "name": [
            "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baitelesov", 
        "givenName": "S. A.", 
        "id": "sg:person.011734071405.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734071405.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.443859.7", 
          "name": [
            "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibragimova", 
        "givenName": "E. M.", 
        "id": "sg:person.015037700510.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015037700510.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.443859.7", 
          "name": [
            "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kungurov", 
        "givenName": "F. R.", 
        "id": "sg:person.016576757265.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576757265.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.443859.7", 
          "name": [
            "Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salikhbaev", 
        "givenName": "U. S.", 
        "id": "sg:person.015377663223.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377663223.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-03-05", 
    "datePublishedReg": "2011-03-05", 
    "description": "The neutron flux density from 0.025 eV to 12 MeV has been measured experimentally in all channels of the VVR-SM core by the activation method using threshold monitors (Au, Ni, Fe. Ti, Mg, Y). Comparing with a calculation of the neutron flux density at different energy using the IRT-2D computer code showed agreement to within 5%. The distribution of the neutron fluxes and spectra in the core, which is of practical utility for radiation technologies, was obtained. A series of irradiations has been conducted and experimental dependences of the irradiation time on the channel position in the core as well as on the size of the stones for obtaining a standard light blue and dark blue color have been obtained. The irradiation conditions making it possible to lower the induced radioactivity of the minerals three-fold as a result of increasing the ratio of the fast to thermal neutron fluxes are found.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10512-011-9368-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1272424", 
        "issn": [
          "1063-4258", 
          "1573-8205"
        ], 
        "name": "Atomic Energy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "keywords": [
      "neutron flux density", 
      "flux density", 
      "neutron flux", 
      "thermal neutron flux", 
      "computer code", 
      "experimental dependence", 
      "irradiation conditions", 
      "irradiation time", 
      "radiation technology", 
      "channel position", 
      "activation method", 
      "flux", 
      "standard light", 
      "density", 
      "dark blue color", 
      "series of irradiations", 
      "neutron spectrum", 
      "different energies", 
      "core", 
      "energy", 
      "technology", 
      "natural topaz", 
      "practical utility", 
      "agreement", 
      "conditions", 
      "ratio", 
      "distribution", 
      "dependence", 
      "size", 
      "blue color", 
      "calculations", 
      "irradiation", 
      "minerals", 
      "channels", 
      "method", 
      "code", 
      "spectra", 
      "results", 
      "monitor", 
      "color", 
      "effect", 
      "time", 
      "position", 
      "series", 
      "light", 
      "topaz", 
      "three-fold", 
      "stones", 
      "MeV", 
      "utility", 
      "radioactivity", 
      "VVR-SM core", 
      "threshold monitors", 
      "IRT-2D computer code", 
      "VVR-SM neutron spectrum"
    ], 
    "name": "Effect of the VVR-SM neutron spectrum on the radioactivity and color of natural topazes", 
    "pagination": "355-361", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010090212"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10512-011-9368-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10512-011-9368-6", 
      "https://app.dimensions.ai/details/publication/pub.1010090212"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_543.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10512-011-9368-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10512-011-9368-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10512-011-9368-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10512-011-9368-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10512-011-9368-6'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      80 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10512-011-9368-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N4b23fd560b6d473b94016250b318318e
4 schema:datePublished 2011-03-05
5 schema:datePublishedReg 2011-03-05
6 schema:description The neutron flux density from 0.025 eV to 12 MeV has been measured experimentally in all channels of the VVR-SM core by the activation method using threshold monitors (Au, Ni, Fe. Ti, Mg, Y). Comparing with a calculation of the neutron flux density at different energy using the IRT-2D computer code showed agreement to within 5%. The distribution of the neutron fluxes and spectra in the core, which is of practical utility for radiation technologies, was obtained. A series of irradiations has been conducted and experimental dependences of the irradiation time on the channel position in the core as well as on the size of the stones for obtaining a standard light blue and dark blue color have been obtained. The irradiation conditions making it possible to lower the induced radioactivity of the minerals three-fold as a result of increasing the ratio of the fast to thermal neutron fluxes are found.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N87df856eea83431c8f051068f4b9c7e8
11 N9f08b8a83ab241cabd3435bf36d54478
12 sg:journal.1272424
13 schema:keywords IRT-2D computer code
14 MeV
15 VVR-SM core
16 VVR-SM neutron spectrum
17 activation method
18 agreement
19 blue color
20 calculations
21 channel position
22 channels
23 code
24 color
25 computer code
26 conditions
27 core
28 dark blue color
29 density
30 dependence
31 different energies
32 distribution
33 effect
34 energy
35 experimental dependence
36 flux
37 flux density
38 irradiation
39 irradiation conditions
40 irradiation time
41 light
42 method
43 minerals
44 monitor
45 natural topaz
46 neutron flux
47 neutron flux density
48 neutron spectrum
49 position
50 practical utility
51 radiation technology
52 radioactivity
53 ratio
54 results
55 series
56 series of irradiations
57 size
58 spectra
59 standard light
60 stones
61 technology
62 thermal neutron flux
63 three-fold
64 threshold monitors
65 time
66 topaz
67 utility
68 schema:name Effect of the VVR-SM neutron spectrum on the radioactivity and color of natural topazes
69 schema:pagination 355-361
70 schema:productId Nc6845340e4cf40b489fdd3b4e81a1749
71 Nd418f253e05d4a6cb01f38df50a7f059
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010090212
73 https://doi.org/10.1007/s10512-011-9368-6
74 schema:sdDatePublished 2021-11-01T18:16
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N0c74c5f1ef47400dbc571928b14a644c
77 schema:url https://doi.org/10.1007/s10512-011-9368-6
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0c74c5f1ef47400dbc571928b14a644c schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N4152b0ab9ab94842851eaff4fedfe48f rdf:first sg:person.015377663223.05
84 rdf:rest rdf:nil
85 N4b23fd560b6d473b94016250b318318e rdf:first sg:person.011734071405.12
86 rdf:rest Nefb87b66f47f491cb5babaacd0f08baa
87 N87df856eea83431c8f051068f4b9c7e8 schema:volumeNumber 109
88 rdf:type schema:PublicationVolume
89 N9f08b8a83ab241cabd3435bf36d54478 schema:issueNumber 5
90 rdf:type schema:PublicationIssue
91 Nc1bf4d203b4942af9cc1fe9657bbb7b2 rdf:first sg:person.016576757265.49
92 rdf:rest N4152b0ab9ab94842851eaff4fedfe48f
93 Nc6845340e4cf40b489fdd3b4e81a1749 schema:name dimensions_id
94 schema:value pub.1010090212
95 rdf:type schema:PropertyValue
96 Nd418f253e05d4a6cb01f38df50a7f059 schema:name doi
97 schema:value 10.1007/s10512-011-9368-6
98 rdf:type schema:PropertyValue
99 Nefb87b66f47f491cb5babaacd0f08baa rdf:first sg:person.015037700510.66
100 rdf:rest Nc1bf4d203b4942af9cc1fe9657bbb7b2
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
105 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1272424 schema:issn 1063-4258
108 1573-8205
109 schema:name Atomic Energy
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.011734071405.12 schema:affiliation grid-institutes:grid.443859.7
113 schema:familyName Baitelesov
114 schema:givenName S. A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011734071405.12
116 rdf:type schema:Person
117 sg:person.015037700510.66 schema:affiliation grid-institutes:grid.443859.7
118 schema:familyName Ibragimova
119 schema:givenName E. M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015037700510.66
121 rdf:type schema:Person
122 sg:person.015377663223.05 schema:affiliation grid-institutes:grid.443859.7
123 schema:familyName Salikhbaev
124 schema:givenName U. S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377663223.05
126 rdf:type schema:Person
127 sg:person.016576757265.49 schema:affiliation grid-institutes:grid.443859.7
128 schema:familyName Kungurov
129 schema:givenName F. R.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016576757265.49
131 rdf:type schema:Person
132 grid-institutes:grid.443859.7 schema:alternateName Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
133 schema:name Institute of Nuclear Physics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...