Equation of State for Hot Quark Matter with Neutrino Confinement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

G. S. Hajyan

ABSTRACT

The equation of state and composition of hot strange quark matter that is opaque to neutrinos are determined. This study is based on the MIT quark bag model. Three different variants of the lepton population in hot quark matter are considered. In the first, only e–, e+, νe, and ν¯e leptons are present in the material. In the second, μ–, μ+, νμ, and ν¯μ are added to these leptons. And in the third, τ– neutrinos and τ+ antineutrinos are also present and the phenomenon of neutrino oscillations is taken into account. Numerical calculations are done for different temperatures and lepton charge densities. It is shown that when neutrinos exist in hot quark matter (T~1012 K) the number of u quarks is 24-33% and 37-42% greater than the number of d and s quarks, respectively, depending on the baryon charge concentration. When neutrino oscillations are included, these parameters go to 19-27% and 30-37%. When there are no neutrinos, on the other hand, the number of d quarks is less than the number of u quarks by 2-8%. It is shown that for a fixed baryon charge concentration, the pressure of the quark matter depends strongly on temperature. This dependence is especially strong at comparatively low densities. As opposed to this, the pressure has a weak temperature dependence for a fixed energy density. More... »

PAGES

511-524

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10511-018-9553-6

DOI

http://dx.doi.org/10.1007/s10511-018-9553-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107989267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hajyan", 
        "givenName": "G. S.", 
        "id": "sg:person.015262606315.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015262606315.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1674-4527/11/7/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011422773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/496/1/012005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012413177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-014-9358-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019694245", 
          "https://doi.org/10.1007/s10511-014-9358-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-012-9249-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050477081", 
          "https://doi.org/10.1007/s10511-012-9249-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2004.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051517162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.30.272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060692218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.30.272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060692218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.9.3471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060709533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.9.3471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060709533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0156.198812a.0561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071218201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The equation of state and composition of hot strange quark matter that is opaque to neutrinos are determined. This study is based on the MIT quark bag model. Three different variants of the lepton population in hot quark matter are considered. In the first, only e\u2013, e+, \u03bde, and \u03bd\u00afe leptons are present in the material. In the second, \u03bc\u2013, \u03bc+, \u03bd\u03bc, and \u03bd\u00af\u03bc are added to these leptons. And in the third, \u03c4\u2013 neutrinos and \u03c4+ antineutrinos are also present and the phenomenon of neutrino oscillations is taken into account. Numerical calculations are done for different temperatures and lepton charge densities. It is shown that when neutrinos exist in hot quark matter (T~1012 K) the number of u quarks is 24-33% and 37-42% greater than the number of d and s quarks, respectively, depending on the baryon charge concentration. When neutrino oscillations are included, these parameters go to 19-27% and 30-37%. When there are no neutrinos, on the other hand, the number of d quarks is less than the number of u quarks by 2-8%. It is shown that for a fixed baryon charge concentration, the pressure of the quark matter depends strongly on temperature. This dependence is especially strong at comparatively low densities. As opposed to this, the pressure has a weak temperature dependence for a fixed energy density.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10511-018-9553-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136580", 
        "issn": [
          "0571-7256", 
          "1573-8191"
        ], 
        "name": "Astrophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Equation of State for Hot Quark Matter with Neutrino Confinement", 
    "pagination": "511-524", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39253021a945b7d6f6306973973db266427f3a300c4e5deeb90a852268553fd0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10511-018-9553-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107989267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10511-018-9553-6", 
      "https://app.dimensions.ai/details/publication/pub.1107989267"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10511-018-9553-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9553-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9553-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9553-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9553-6'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10511-018-9553-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N67a4250bd82f4b5187e7106fccfb849b
4 schema:citation sg:pub.10.1007/s10511-012-9249-2
5 sg:pub.10.1007/s10511-014-9358-1
6 https://doi.org/10.1016/j.physrep.2004.11.004
7 https://doi.org/10.1088/1674-4527/11/7/010
8 https://doi.org/10.1088/1742-6596/496/1/012005
9 https://doi.org/10.1103/physrevd.30.272
10 https://doi.org/10.1103/physrevd.9.3471
11 https://doi.org/10.3367/ufnr.0156.198812a.0561
12 schema:datePublished 2018-12
13 schema:datePublishedReg 2018-12-01
14 schema:description The equation of state and composition of hot strange quark matter that is opaque to neutrinos are determined. This study is based on the MIT quark bag model. Three different variants of the lepton population in hot quark matter are considered. In the first, only e–, e+, νe, and ν¯e leptons are present in the material. In the second, μ–, μ+, νμ, and ν¯μ are added to these leptons. And in the third, τ– neutrinos and τ+ antineutrinos are also present and the phenomenon of neutrino oscillations is taken into account. Numerical calculations are done for different temperatures and lepton charge densities. It is shown that when neutrinos exist in hot quark matter (T~1012 K) the number of u quarks is 24-33% and 37-42% greater than the number of d and s quarks, respectively, depending on the baryon charge concentration. When neutrino oscillations are included, these parameters go to 19-27% and 30-37%. When there are no neutrinos, on the other hand, the number of d quarks is less than the number of u quarks by 2-8%. It is shown that for a fixed baryon charge concentration, the pressure of the quark matter depends strongly on temperature. This dependence is especially strong at comparatively low densities. As opposed to this, the pressure has a weak temperature dependence for a fixed energy density.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N0da4f8cc285d4b8a80dba46c19dc903f
19 Naa4ed9e5422f47558dbff2b895d77044
20 sg:journal.1136580
21 schema:name Equation of State for Hot Quark Matter with Neutrino Confinement
22 schema:pagination 511-524
23 schema:productId N0a52c9134d7f4e82900dbe32d3625210
24 N6edddbe80b3a4674adaf8f35a0215bde
25 Ncc216812abc64815b4e747833b48e582
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107989267
27 https://doi.org/10.1007/s10511-018-9553-6
28 schema:sdDatePublished 2019-04-11T01:18
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N0c69cec571f64050bb0d1f5ce328f1b5
31 schema:url https://link.springer.com/10.1007%2Fs10511-018-9553-6
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0a52c9134d7f4e82900dbe32d3625210 schema:name dimensions_id
36 schema:value pub.1107989267
37 rdf:type schema:PropertyValue
38 N0c69cec571f64050bb0d1f5ce328f1b5 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N0da4f8cc285d4b8a80dba46c19dc903f schema:volumeNumber 61
41 rdf:type schema:PublicationVolume
42 N67a4250bd82f4b5187e7106fccfb849b rdf:first sg:person.015262606315.24
43 rdf:rest rdf:nil
44 N6edddbe80b3a4674adaf8f35a0215bde schema:name doi
45 schema:value 10.1007/s10511-018-9553-6
46 rdf:type schema:PropertyValue
47 Naa4ed9e5422f47558dbff2b895d77044 schema:issueNumber 4
48 rdf:type schema:PublicationIssue
49 Ncc216812abc64815b4e747833b48e582 schema:name readcube_id
50 schema:value 39253021a945b7d6f6306973973db266427f3a300c4e5deeb90a852268553fd0
51 rdf:type schema:PropertyValue
52 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
53 schema:name Chemical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Chemistry (incl. Structural)
57 rdf:type schema:DefinedTerm
58 sg:journal.1136580 schema:issn 0571-7256
59 1573-8191
60 schema:name Astrophysics
61 rdf:type schema:Periodical
62 sg:person.015262606315.24 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
63 schema:familyName Hajyan
64 schema:givenName G. S.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015262606315.24
66 rdf:type schema:Person
67 sg:pub.10.1007/s10511-012-9249-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050477081
68 https://doi.org/10.1007/s10511-012-9249-2
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/s10511-014-9358-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019694245
71 https://doi.org/10.1007/s10511-014-9358-1
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.physrep.2004.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051517162
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1088/1674-4527/11/7/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011422773
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1088/1742-6596/496/1/012005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012413177
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/physrevd.30.272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060692218
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1103/physrevd.9.3471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060709533
82 rdf:type schema:CreativeWork
83 https://doi.org/10.3367/ufnr.0156.198812a.0561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218201
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
86 schema:name Erevan State University, Yerevan, Armenia
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...