Magnetic Field Generation in Hybrid Stars View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

D. M. Sedrakian, M. V. Hayrapetyan, D. S. Baghdasaryan

ABSTRACT

The mechanism for magnetic field generation in hybrid neutron stars (containing “npe,” hadron, “2SC” and “CFL” quark phases) is discussed. It is assumed that the rotational vortices in “npe” and “CFL” phases with a quantum of circulation h/2m also continue in the “2SC” phase. Since the superconducting components in the “npe” and “2SC” phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5·1015 G and exceeds the field in the “npe” phase by 2-3 orders of magnitude. The magnetic field penetrates into the “CFL” phase by means of magnetic vortices with a flux 2Φ0 and it can partially destroy the proton superconductivity in the “npe” phase. On the star’s surface, the magnetic field reaches 5·1014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter. More... »

PAGES

113-121

References to SciGraph publications

  • 2012-09. Energy source for the radio emission from pulsars in ASTROPHYSICS
  • 2000-07. Generation of the magnetic fields of pulsars in ASTROPHYSICS
  • 2016. Magnetars: Properties, Origin and Evolution in THE STRONGEST MAGNETIC FIELDS IN THE UNIVERSE
  • 2015-03. Mechanism for Radio Emission of Pulsars in ASTROPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2

    DOI

    http://dx.doi.org/10.1007/s10511-018-9520-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101767971


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yerevan State University", 
              "id": "https://www.grid.ac/institutes/grid.21072.36", 
              "name": [
                "Erevan State University, Yerevan, Armenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sedrakian", 
            "givenName": "D. M.", 
            "id": "sg:person.010547741535.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yerevan State University", 
              "id": "https://www.grid.ac/institutes/grid.21072.36", 
              "name": [
                "Erevan State University, Yerevan, Armenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayrapetyan", 
            "givenName": "M. V.", 
            "id": "sg:person.010434403337.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434403337.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Byurakan Astrophysical Observatory", 
              "id": "https://www.grid.ac/institutes/grid.440297.c", 
              "name": [
                "V. Ambartsumyan Byurakan Astrophysical Observatory, Byurakan, Armenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baghdasaryan", 
            "givenName": "D. S.", 
            "id": "sg:person.014420667403.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420667403.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4939-3550-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016261851", 
              "https://doi.org/10.1007/978-1-4939-3550-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.3956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018364652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.3956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018364652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.014015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018713053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.014015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018713053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.71.054011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022587591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.71.054011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022587591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02683961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026374308", 
              "https://doi.org/10.1007/bf02683961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02683961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026374308", 
              "https://doi.org/10.1007/bf02683961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.083007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029440347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.083007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029440347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00668-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030072784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00063-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034664884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.074009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046212049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.074009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046212049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047276319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047276319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0954-3899/37/7/075202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0954-3899/37/7/075202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10511-015-9371-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051527272", 
              "https://doi.org/10.1007/s10511-015-9371-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10511-012-9244-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052842546", 
              "https://doi.org/10.1007/s10511-012-9244-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361/201322484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056921023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/175876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058507165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.023004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060706738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.023004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060706738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3367/ufnr.0161.199107a.0003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071218520"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03", 
        "datePublishedReg": "2018-03-01", 
        "description": "The mechanism for magnetic field generation in hybrid neutron stars (containing \u201cnpe,\u201d hadron, \u201c2SC\u201d and \u201cCFL\u201d quark phases) is discussed. It is assumed that the rotational vortices in \u201cnpe\u201d and \u201cCFL\u201d phases with a quantum of circulation h/2m also continue in the \u201c2SC\u201d phase. Since the superconducting components in the \u201cnpe\u201d and \u201c2SC\u201d phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5\u00b71015 G and exceeds the field in the \u201cnpe\u201d phase by 2-3 orders of magnitude. The magnetic field penetrates into the \u201cCFL\u201d phase by means of magnetic vortices with a flux 2\u03a60 and it can partially destroy the proton superconductivity in the \u201cnpe\u201d phase. On the star\u2019s surface, the magnetic field reaches 5\u00b71014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10511-018-9520-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136580", 
            "issn": [
              "0571-7256", 
              "1573-8191"
            ], 
            "name": "Astrophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "61"
          }
        ], 
        "name": "Magnetic Field Generation in Hybrid Stars", 
        "pagination": "113-121", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2042f9023f3d79a387ee2955e2e9e0f8198dd77f149e8ec8127d71860e94a02a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10511-018-9520-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101767971"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10511-018-9520-2", 
          "https://app.dimensions.ai/details/publication/pub.1101767971"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10511-018-9520-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10511-018-9520-2 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N7d5c29dcd40b4febbdfcfeb858853d9f
    4 schema:citation sg:pub.10.1007/978-1-4939-3550-5_10
    5 sg:pub.10.1007/bf02683961
    6 sg:pub.10.1007/s10511-012-9244-7
    7 sg:pub.10.1007/s10511-015-9371-z
    8 https://doi.org/10.1016/0370-1573(84)90145-5
    9 https://doi.org/10.1016/s0550-3213(00)00063-8
    10 https://doi.org/10.1016/s0550-3213(98)00668-3
    11 https://doi.org/10.1051/0004-6361/201322484
    12 https://doi.org/10.1086/175876
    13 https://doi.org/10.1088/0954-3899/37/7/075202
    14 https://doi.org/10.1103/physrevd.66.014015
    15 https://doi.org/10.1103/physrevd.71.054011
    16 https://doi.org/10.1103/physrevd.73.074009
    17 https://doi.org/10.1103/physrevd.77.023004
    18 https://doi.org/10.1103/physrevd.79.083007
    19 https://doi.org/10.1103/physrevlett.82.3956
    20 https://doi.org/10.3367/ufnr.0161.199107a.0003
    21 schema:datePublished 2018-03
    22 schema:datePublishedReg 2018-03-01
    23 schema:description The mechanism for magnetic field generation in hybrid neutron stars (containing “npe,” hadron, “2SC” and “CFL” quark phases) is discussed. It is assumed that the rotational vortices in “npe” and “CFL” phases with a quantum of circulation h/2m also continue in the “2SC” phase. Since the superconducting components in the “npe” and “2SC” phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5·1015 G and exceeds the field in the “npe” phase by 2-3 orders of magnitude. The magnetic field penetrates into the “CFL” phase by means of magnetic vortices with a flux 2Φ0 and it can partially destroy the proton superconductivity in the “npe” phase. On the star’s surface, the magnetic field reaches 5·1014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N4d3d9b02558f4fb8a630190e2189c838
    28 N9c628076bfa64787aed1851fbd03c52a
    29 sg:journal.1136580
    30 schema:name Magnetic Field Generation in Hybrid Stars
    31 schema:pagination 113-121
    32 schema:productId N5da95f00c67d429e8d2da5005b59857c
    33 Ne299690353c84bf78eaea9ac49358f31
    34 Nf0366812a41844fd92c6573cb7fad286
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101767971
    36 https://doi.org/10.1007/s10511-018-9520-2
    37 schema:sdDatePublished 2019-04-11T13:09
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N81d1f9d1e61f416a9c647eb24a5e9f4e
    40 schema:url https://link.springer.com/10.1007%2Fs10511-018-9520-2
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N4d3d9b02558f4fb8a630190e2189c838 schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 N5da95f00c67d429e8d2da5005b59857c schema:name dimensions_id
    47 schema:value pub.1101767971
    48 rdf:type schema:PropertyValue
    49 N7d5c29dcd40b4febbdfcfeb858853d9f rdf:first sg:person.010547741535.23
    50 rdf:rest Ndfb42202240147a4b7c428ef7b36f6bf
    51 N81d1f9d1e61f416a9c647eb24a5e9f4e schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N9c628076bfa64787aed1851fbd03c52a schema:volumeNumber 61
    54 rdf:type schema:PublicationVolume
    55 Ndc8bbd632c4143ac823e19d743a806cf rdf:first sg:person.014420667403.67
    56 rdf:rest rdf:nil
    57 Ndfb42202240147a4b7c428ef7b36f6bf rdf:first sg:person.010434403337.56
    58 rdf:rest Ndc8bbd632c4143ac823e19d743a806cf
    59 Ne299690353c84bf78eaea9ac49358f31 schema:name doi
    60 schema:value 10.1007/s10511-018-9520-2
    61 rdf:type schema:PropertyValue
    62 Nf0366812a41844fd92c6573cb7fad286 schema:name readcube_id
    63 schema:value 2042f9023f3d79a387ee2955e2e9e0f8198dd77f149e8ec8127d71860e94a02a
    64 rdf:type schema:PropertyValue
    65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Physical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1136580 schema:issn 0571-7256
    72 1573-8191
    73 schema:name Astrophysics
    74 rdf:type schema:Periodical
    75 sg:person.010434403337.56 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
    76 schema:familyName Hayrapetyan
    77 schema:givenName M. V.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434403337.56
    79 rdf:type schema:Person
    80 sg:person.010547741535.23 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
    81 schema:familyName Sedrakian
    82 schema:givenName D. M.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23
    84 rdf:type schema:Person
    85 sg:person.014420667403.67 schema:affiliation https://www.grid.ac/institutes/grid.440297.c
    86 schema:familyName Baghdasaryan
    87 schema:givenName D. S.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420667403.67
    89 rdf:type schema:Person
    90 sg:pub.10.1007/978-1-4939-3550-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016261851
    91 https://doi.org/10.1007/978-1-4939-3550-5_10
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf02683961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026374308
    94 https://doi.org/10.1007/bf02683961
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s10511-012-9244-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052842546
    97 https://doi.org/10.1007/s10511-012-9244-7
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s10511-015-9371-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051527272
    100 https://doi.org/10.1007/s10511-015-9371-z
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0370-1573(84)90145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276319
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/s0550-3213(00)00063-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664884
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s0550-3213(98)00668-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072784
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1051/0004-6361/201322484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056921023
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1086/175876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507165
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0954-3899/37/7/075202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510329
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevd.66.014015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713053
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevd.71.054011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022587591
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevd.73.074009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212049
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrevd.77.023004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060706738
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevd.79.083007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029440347
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physrevlett.82.3956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018364652
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.3367/ufnr.0161.199107a.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218520
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
    129 schema:name Erevan State University, Yerevan, Armenia
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.440297.c schema:alternateName Byurakan Astrophysical Observatory
    132 schema:name V. Ambartsumyan Byurakan Astrophysical Observatory, Byurakan, Armenia
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...