Magnetic Field Generation in Hybrid Stars View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

D. M. Sedrakian, M. V. Hayrapetyan, D. S. Baghdasaryan

ABSTRACT

The mechanism for magnetic field generation in hybrid neutron stars (containing “npe,” hadron, “2SC” and “CFL” quark phases) is discussed. It is assumed that the rotational vortices in “npe” and “CFL” phases with a quantum of circulation h/2m also continue in the “2SC” phase. Since the superconducting components in the “npe” and “2SC” phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5·1015 G and exceeds the field in the “npe” phase by 2-3 orders of magnitude. The magnetic field penetrates into the “CFL” phase by means of magnetic vortices with a flux 2Φ0 and it can partially destroy the proton superconductivity in the “npe” phase. On the star’s surface, the magnetic field reaches 5·1014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter. More... »

PAGES

113-121

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2

DOI

http://dx.doi.org/10.1007/s10511-018-9520-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101767971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedrakian", 
        "givenName": "D. M.", 
        "id": "sg:person.010547741535.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayrapetyan", 
        "givenName": "M. V.", 
        "id": "sg:person.010434403337.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434403337.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Byurakan Astrophysical Observatory", 
          "id": "https://www.grid.ac/institutes/grid.440297.c", 
          "name": [
            "V. Ambartsumyan Byurakan Astrophysical Observatory, Byurakan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baghdasaryan", 
        "givenName": "D. S.", 
        "id": "sg:person.014420667403.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420667403.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4939-3550-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016261851", 
          "https://doi.org/10.1007/978-1-4939-3550-5_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018364652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018364652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.014015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.014015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02683961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026374308", 
          "https://doi.org/10.1007/bf02683961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02683961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026374308", 
          "https://doi.org/10.1007/bf02683961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.083007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029440347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.083007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029440347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00668-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030072784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00063-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.074009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.074009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0954-3899/37/7/075202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0954-3899/37/7/075202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051510329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-015-9371-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051527272", 
          "https://doi.org/10.1007/s10511-015-9371-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-012-9244-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052842546", 
          "https://doi.org/10.1007/s10511-012-9244-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361/201322484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056921023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/175876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.023004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060706738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.023004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060706738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0161.199107a.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071218520"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "The mechanism for magnetic field generation in hybrid neutron stars (containing \u201cnpe,\u201d hadron, \u201c2SC\u201d and \u201cCFL\u201d quark phases) is discussed. It is assumed that the rotational vortices in \u201cnpe\u201d and \u201cCFL\u201d phases with a quantum of circulation h/2m also continue in the \u201c2SC\u201d phase. Since the superconducting components in the \u201cnpe\u201d and \u201c2SC\u201d phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5\u00b71015 G and exceeds the field in the \u201cnpe\u201d phase by 2-3 orders of magnitude. The magnetic field penetrates into the \u201cCFL\u201d phase by means of magnetic vortices with a flux 2\u03a60 and it can partially destroy the proton superconductivity in the \u201cnpe\u201d phase. On the star\u2019s surface, the magnetic field reaches 5\u00b71014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10511-018-9520-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136580", 
        "issn": [
          "0571-7256", 
          "1573-8191"
        ], 
        "name": "Astrophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Magnetic Field Generation in Hybrid Stars", 
    "pagination": "113-121", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2042f9023f3d79a387ee2955e2e9e0f8198dd77f149e8ec8127d71860e94a02a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10511-018-9520-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101767971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10511-018-9520-2", 
      "https://app.dimensions.ai/details/publication/pub.1101767971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10511-018-9520-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10511-018-9520-2'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10511-018-9520-2 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N2e6297974ffa4a0aa88954b4c9895cbc
4 schema:citation sg:pub.10.1007/978-1-4939-3550-5_10
5 sg:pub.10.1007/bf02683961
6 sg:pub.10.1007/s10511-012-9244-7
7 sg:pub.10.1007/s10511-015-9371-z
8 https://doi.org/10.1016/0370-1573(84)90145-5
9 https://doi.org/10.1016/s0550-3213(00)00063-8
10 https://doi.org/10.1016/s0550-3213(98)00668-3
11 https://doi.org/10.1051/0004-6361/201322484
12 https://doi.org/10.1086/175876
13 https://doi.org/10.1088/0954-3899/37/7/075202
14 https://doi.org/10.1103/physrevd.66.014015
15 https://doi.org/10.1103/physrevd.71.054011
16 https://doi.org/10.1103/physrevd.73.074009
17 https://doi.org/10.1103/physrevd.77.023004
18 https://doi.org/10.1103/physrevd.79.083007
19 https://doi.org/10.1103/physrevlett.82.3956
20 https://doi.org/10.3367/ufnr.0161.199107a.0003
21 schema:datePublished 2018-03
22 schema:datePublishedReg 2018-03-01
23 schema:description The mechanism for magnetic field generation in hybrid neutron stars (containing “npe,” hadron, “2SC” and “CFL” quark phases) is discussed. It is assumed that the rotational vortices in “npe” and “CFL” phases with a quantum of circulation h/2m also continue in the “2SC” phase. Since the superconducting components in the “npe” and “2SC” phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5·1015 G and exceeds the field in the “npe” phase by 2-3 orders of magnitude. The magnetic field penetrates into the “CFL” phase by means of magnetic vortices with a flux 2Φ0 and it can partially destroy the proton superconductivity in the “npe” phase. On the star’s surface, the magnetic field reaches 5·1014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Ndc47fac9b07146618c3220c38949475c
28 Ne3ce9b0bb2864228a034958fecb080b1
29 sg:journal.1136580
30 schema:name Magnetic Field Generation in Hybrid Stars
31 schema:pagination 113-121
32 schema:productId N01557a47e905420490e6f4ecba62413c
33 Nb30f0e52349e4f139d1d2f105dbf2625
34 Ndc8dd459baaa4e0ebda5ce2c94954de4
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101767971
36 https://doi.org/10.1007/s10511-018-9520-2
37 schema:sdDatePublished 2019-04-11T13:09
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ndb1f2b235f3a44a29d05499fb46d49bb
40 schema:url https://link.springer.com/10.1007%2Fs10511-018-9520-2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N01557a47e905420490e6f4ecba62413c schema:name dimensions_id
45 schema:value pub.1101767971
46 rdf:type schema:PropertyValue
47 N2e6297974ffa4a0aa88954b4c9895cbc rdf:first sg:person.010547741535.23
48 rdf:rest Na64a755976ac4cd9ac72aea52cdf8a05
49 N42a9d047b6234878a5d613696e06a3fa rdf:first sg:person.014420667403.67
50 rdf:rest rdf:nil
51 Na64a755976ac4cd9ac72aea52cdf8a05 rdf:first sg:person.010434403337.56
52 rdf:rest N42a9d047b6234878a5d613696e06a3fa
53 Nb30f0e52349e4f139d1d2f105dbf2625 schema:name doi
54 schema:value 10.1007/s10511-018-9520-2
55 rdf:type schema:PropertyValue
56 Ndb1f2b235f3a44a29d05499fb46d49bb schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Ndc47fac9b07146618c3220c38949475c schema:volumeNumber 61
59 rdf:type schema:PublicationVolume
60 Ndc8dd459baaa4e0ebda5ce2c94954de4 schema:name readcube_id
61 schema:value 2042f9023f3d79a387ee2955e2e9e0f8198dd77f149e8ec8127d71860e94a02a
62 rdf:type schema:PropertyValue
63 Ne3ce9b0bb2864228a034958fecb080b1 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136580 schema:issn 0571-7256
72 1573-8191
73 schema:name Astrophysics
74 rdf:type schema:Periodical
75 sg:person.010434403337.56 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
76 schema:familyName Hayrapetyan
77 schema:givenName M. V.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434403337.56
79 rdf:type schema:Person
80 sg:person.010547741535.23 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
81 schema:familyName Sedrakian
82 schema:givenName D. M.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23
84 rdf:type schema:Person
85 sg:person.014420667403.67 schema:affiliation https://www.grid.ac/institutes/grid.440297.c
86 schema:familyName Baghdasaryan
87 schema:givenName D. S.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420667403.67
89 rdf:type schema:Person
90 sg:pub.10.1007/978-1-4939-3550-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016261851
91 https://doi.org/10.1007/978-1-4939-3550-5_10
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02683961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026374308
94 https://doi.org/10.1007/bf02683961
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10511-012-9244-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052842546
97 https://doi.org/10.1007/s10511-012-9244-7
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10511-015-9371-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051527272
100 https://doi.org/10.1007/s10511-015-9371-z
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0370-1573(84)90145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276319
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0550-3213(00)00063-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664884
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0550-3213(98)00668-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072784
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1051/0004-6361/201322484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056921023
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1086/175876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507165
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0954-3899/37/7/075202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510329
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevd.66.014015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713053
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevd.71.054011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022587591
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevd.73.074009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212049
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevd.77.023004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060706738
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevd.79.083007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029440347
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.82.3956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018364652
125 rdf:type schema:CreativeWork
126 https://doi.org/10.3367/ufnr.0161.199107a.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218520
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
129 schema:name Erevan State University, Yerevan, Armenia
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.440297.c schema:alternateName Byurakan Astrophysical Observatory
132 schema:name V. Ambartsumyan Byurakan Astrophysical Observatory, Byurakan, Armenia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...