Strange Quark Stars with a Rotating Superfluid Core View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

D. M. Sedrakian, M. V. Hayrapetyan, D. S. Baghdasaryan

ABSTRACT

The generation of a magnetic field and its distribution inside a rotating bare strange quark star are discussed. It is shown that the difference between the angular velocities of the superfluid and superconducting quark core Ωs and of the normal electron plasma Ωn increases because of spin-down of the star and this leads to the generation of a magnetic field. The magnetic field distribution in a star is found for a stationary value of ∆Ω=Ωs - Ωn = const . The magnetic field in the superconducting quark core and in the normal electron shell is continuous along the star’s axis of rotation and has the same value Bq = Bn, while it is a dipole field outside the star. In all parts of the star this field is determined entirely by the total magnetic moment M of the star. It is also shown that the star’s magnetic moment M is proportional to ΔW, and for some models of compact stars it can vary from 1031-1034 G·cm3. More... »

PAGES

216-232

Journal

TITLE

Astrophysics

ISSUE

2

VOLUME

58

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10511-015-9377-6

DOI

http://dx.doi.org/10.1007/s10511-015-9377-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009089975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedrakian", 
        "givenName": "D. M.", 
        "id": "sg:person.010547741535.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayrapetyan", 
        "givenName": "M. V.", 
        "id": "sg:person.010434403337.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434403337.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baghdasaryan", 
        "givenName": "D. S.", 
        "id": "sg:person.014420667403.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420667403.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011804639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011804639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.014015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.014015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.60.016004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026700519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.60.016004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026700519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.103010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029222231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.103010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029222231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00668-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030072784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00063-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.nucl.51.101701.132449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.70.067301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044711676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.70.067301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044711676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.074009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.074009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ppnp.2004.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047102248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-010-9095-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051425215", 
          "https://doi.org/10.1007/s10511-010-9095-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-010-9095-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051425215", 
          "https://doi.org/10.1007/s10511-010-9095-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-009-9059-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051443736", 
          "https://doi.org/10.1007/s10511-009-9059-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-009-9059-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051443736", 
          "https://doi.org/10.1007/s10511-009-9059-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10511-009-9059-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051443736", 
          "https://doi.org/10.1007/s10511-009-9059-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.045002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.045002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/164679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058495969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/172026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058503316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.184501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.184501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.51.1440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060702906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.51.1440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060702906"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "The generation of a magnetic field and its distribution inside a rotating bare strange quark star are discussed. It is shown that the difference between the angular velocities of the superfluid and superconducting quark core \u03a9s and of the normal electron plasma \u03a9n increases because of spin-down of the star and this leads to the generation of a magnetic field. The magnetic field distribution in a star is found for a stationary value of \u2206\u03a9=\u03a9s - \u03a9n = const . The magnetic field in the superconducting quark core and in the normal electron shell is continuous along the star\u2019s axis of rotation and has the same value Bq = Bn, while it is a dipole field outside the star. In all parts of the star this field is determined entirely by the total magnetic moment M of the star. It is also shown that the star\u2019s magnetic moment M is proportional to \u0394W, and for some models of compact stars it can vary from 1031-1034 G\u00b7cm3.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10511-015-9377-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136580", 
        "issn": [
          "0571-7256", 
          "1573-8191"
        ], 
        "name": "Astrophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Strange Quark Stars with a Rotating Superfluid Core", 
    "pagination": "216-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b4e5cbcaed2807bc9781cfe95a79fe508e60d65f4852b22bbbccf4c38d8a1e6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10511-015-9377-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009089975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10511-015-9377-6", 
      "https://app.dimensions.ai/details/publication/pub.1009089975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000530.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10511-015-9377-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10511-015-9377-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10511-015-9377-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10511-015-9377-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10511-015-9377-6'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10511-015-9377-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N1f61447c150c4baeb3bce9dfd265ec6c
4 schema:citation sg:pub.10.1007/s10511-009-9059-3
5 sg:pub.10.1007/s10511-010-9095-z
6 https://doi.org/10.1016/0370-1573(84)90145-5
7 https://doi.org/10.1016/j.ppnp.2004.07.001
8 https://doi.org/10.1016/s0550-3213(00)00063-8
9 https://doi.org/10.1016/s0550-3213(98)00668-3
10 https://doi.org/10.1086/164679
11 https://doi.org/10.1086/172026
12 https://doi.org/10.1103/physrevb.76.184501
13 https://doi.org/10.1103/physrevd.51.1440
14 https://doi.org/10.1103/physrevd.60.016004
15 https://doi.org/10.1103/physrevd.66.014015
16 https://doi.org/10.1103/physrevd.70.067301
17 https://doi.org/10.1103/physrevd.71.054011
18 https://doi.org/10.1103/physrevd.73.074009
19 https://doi.org/10.1103/physrevd.78.045002
20 https://doi.org/10.1103/physrevd.82.103010
21 https://doi.org/10.1103/revmodphys.80.1455
22 https://doi.org/10.1146/annurev.nucl.51.101701.132449
23 schema:datePublished 2015-06
24 schema:datePublishedReg 2015-06-01
25 schema:description The generation of a magnetic field and its distribution inside a rotating bare strange quark star are discussed. It is shown that the difference between the angular velocities of the superfluid and superconducting quark core Ωs and of the normal electron plasma Ωn increases because of spin-down of the star and this leads to the generation of a magnetic field. The magnetic field distribution in a star is found for a stationary value of ∆Ω=Ωs - Ωn = const . The magnetic field in the superconducting quark core and in the normal electron shell is continuous along the star’s axis of rotation and has the same value Bq = Bn, while it is a dipole field outside the star. In all parts of the star this field is determined entirely by the total magnetic moment M of the star. It is also shown that the star’s magnetic moment M is proportional to ΔW, and for some models of compact stars it can vary from 1031-1034 G·cm3.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Na14af224002e4d17bbf313bec3e9c227
30 Na78c74d6fffc47e7893c7784173c125c
31 sg:journal.1136580
32 schema:name Strange Quark Stars with a Rotating Superfluid Core
33 schema:pagination 216-232
34 schema:productId N9bc74c64486843a487ad863dcb552091
35 Na5cb0610bb054aa8932b90627b2e480f
36 Nf0ee78dfa051430abced4bad9cfc533d
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009089975
38 https://doi.org/10.1007/s10511-015-9377-6
39 schema:sdDatePublished 2019-04-10T16:46
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N4faf81bd5d8a4b7f8d380f74a6e88c78
42 schema:url http://link.springer.com/10.1007%2Fs10511-015-9377-6
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N15e8b2f25c764a1c9fe677445eaaf02a rdf:first sg:person.014420667403.67
47 rdf:rest rdf:nil
48 N1f61447c150c4baeb3bce9dfd265ec6c rdf:first sg:person.010547741535.23
49 rdf:rest Nb179b2f326304244a0cdb5d8b911be3f
50 N4faf81bd5d8a4b7f8d380f74a6e88c78 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N9bc74c64486843a487ad863dcb552091 schema:name doi
53 schema:value 10.1007/s10511-015-9377-6
54 rdf:type schema:PropertyValue
55 Na14af224002e4d17bbf313bec3e9c227 schema:volumeNumber 58
56 rdf:type schema:PublicationVolume
57 Na5cb0610bb054aa8932b90627b2e480f schema:name readcube_id
58 schema:value 2b4e5cbcaed2807bc9781cfe95a79fe508e60d65f4852b22bbbccf4c38d8a1e6
59 rdf:type schema:PropertyValue
60 Na78c74d6fffc47e7893c7784173c125c schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 Nb179b2f326304244a0cdb5d8b911be3f rdf:first sg:person.010434403337.56
63 rdf:rest N15e8b2f25c764a1c9fe677445eaaf02a
64 Nf0ee78dfa051430abced4bad9cfc533d schema:name dimensions_id
65 schema:value pub.1009089975
66 rdf:type schema:PropertyValue
67 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
71 schema:name Other Physical Sciences
72 rdf:type schema:DefinedTerm
73 sg:journal.1136580 schema:issn 0571-7256
74 1573-8191
75 schema:name Astrophysics
76 rdf:type schema:Periodical
77 sg:person.010434403337.56 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
78 schema:familyName Hayrapetyan
79 schema:givenName M. V.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434403337.56
81 rdf:type schema:Person
82 sg:person.010547741535.23 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
83 schema:familyName Sedrakian
84 schema:givenName D. M.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23
86 rdf:type schema:Person
87 sg:person.014420667403.67 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
88 schema:familyName Baghdasaryan
89 schema:givenName D. S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014420667403.67
91 rdf:type schema:Person
92 sg:pub.10.1007/s10511-009-9059-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051443736
93 https://doi.org/10.1007/s10511-009-9059-3
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10511-010-9095-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051425215
96 https://doi.org/10.1007/s10511-010-9095-z
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0370-1573(84)90145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276319
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.ppnp.2004.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047102248
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0550-3213(00)00063-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664884
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0550-3213(98)00668-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072784
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1086/164679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058495969
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1086/172026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058503316
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevb.76.184501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060622921
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevd.51.1440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060702906
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevd.60.016004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026700519
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevd.66.014015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713053
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevd.70.067301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044711676
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevd.71.054011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022587591
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevd.73.074009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212049
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevd.78.045002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053343595
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevd.82.103010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029222231
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/revmodphys.80.1455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011804639
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1146/annurev.nucl.51.101701.132449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389669
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
133 schema:name Erevan State University, Yerevan, Armenia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...