Vortex structure of neutron stars with triplet neutron superfluidity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

K. M. Shahabasyan, M. K. Shahabasyan

ABSTRACT

The vortex structure of the “npe” phase of neutron stars with a 3P2 superfluid neutron condensate of Cooper pairs is discussed. It is shown that, as the star rotates, superfluid neutron vortex filaments described by a unitary ordering parameter develop in the “npe” phase. The entrainment of superconducting protons by the rotating superfluid neutrons is examined. The entrainment effect leads to the appearance of clusters of proton vortices around each neutron vortex and generates a magnetic field on the order of 1012 G. 3P2 neutron vortex filaments combine with quark semi-superfluid vortex filaments at the boundary of the “npe” and “CFL” phases. At the boundary of the “Aen” and “npe” phases, they combine with 1S0 neutron vortex filaments. In this way, a unified vortex structure is formed. The existence of this structure and its collective elastic oscillations explain the observed oscillations in the angular rotation velocity of pulsars. More... »

PAGES

429

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10511-011-9193-6

DOI

http://dx.doi.org/10.1007/s10511-011-9193-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037597931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahabasyan", 
        "givenName": "K. M.", 
        "id": "sg:person.013044347401.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044347401.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahabasyan", 
        "givenName": "M. K.", 
        "id": "sg:person.07410263443.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410263443.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/224872a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003534379", 
          "https://doi.org/10.1038/224872a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/224872a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003534379", 
          "https://doi.org/10.1038/224872a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007841592", 
          "https://doi.org/10.1038/35020010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007841592", 
          "https://doi.org/10.1038/35020010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.014015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.014015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/256025a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019281125", 
          "https://doi.org/10.1038/256025a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/256025a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019281125", 
          "https://doi.org/10.1038/256025a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/224673a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019387878", 
          "https://doi.org/10.1038/224673a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.023008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019952355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.023008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019952355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.71.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022587591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2009.15938.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027971147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2009.15938.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027971147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2041-8205/719/2/l111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028033718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00668-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030072784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-3933.2011.01015.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034856468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.125011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035086179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.125011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035086179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2041-8205/719/2/l167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036407656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.081101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038828542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.081101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038828542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.074009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.73.074009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046212049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/225619a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051873696", 
          "https://doi.org/10.1038/225619a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.045002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.045002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053343595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/148829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058480120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/161616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058492906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/162232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058493522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/175876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.17.1524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060685554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.17.1524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060685554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.21.1494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.21.1494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.24.3048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.24.3048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.25.967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.25.967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.29.2705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.29.2705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.24.775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.24.775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0161.199107a.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071218520"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09", 
    "datePublishedReg": "2011-09-01", 
    "description": "The vortex structure of the \u201cnpe\u201d phase of neutron stars with a 3P2 superfluid neutron condensate of Cooper pairs is discussed. It is shown that, as the star rotates, superfluid neutron vortex filaments described by a unitary ordering parameter develop in the \u201cnpe\u201d phase. The entrainment of superconducting protons by the rotating superfluid neutrons is examined. The entrainment effect leads to the appearance of clusters of proton vortices around each neutron vortex and generates a magnetic field on the order of 1012 G. 3P2 neutron vortex filaments combine with quark semi-superfluid vortex filaments at the boundary of the \u201cnpe\u201d and \u201cCFL\u201d phases. At the boundary of the \u201cAen\u201d and \u201cnpe\u201d phases, they combine with 1S0 neutron vortex filaments. In this way, a unified vortex structure is formed. The existence of this structure and its collective elastic oscillations explain the observed oscillations in the angular rotation velocity of pulsars.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10511-011-9193-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136580", 
        "issn": [
          "0571-7256", 
          "1573-8191"
        ], 
        "name": "Astrophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Vortex structure of neutron stars with triplet neutron superfluidity", 
    "pagination": "429", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b31a8851fbeba90c46d16c092a0d37459f0993fd4b1aefa0fb8e6fa40711a207"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10511-011-9193-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037597931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10511-011-9193-6", 
      "https://app.dimensions.ai/details/publication/pub.1037597931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000533.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10511-011-9193-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10511-011-9193-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10511-011-9193-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10511-011-9193-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10511-011-9193-6'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10511-011-9193-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na2ffaba7e6cc4ef3b0dbe30c1d929a84
4 schema:citation sg:pub.10.1038/224673a0
5 sg:pub.10.1038/224872a0
6 sg:pub.10.1038/225619a0
7 sg:pub.10.1038/256025a0
8 sg:pub.10.1038/35020010
9 https://doi.org/10.1016/s0550-3213(98)00668-3
10 https://doi.org/10.1086/148829
11 https://doi.org/10.1086/161616
12 https://doi.org/10.1086/162232
13 https://doi.org/10.1086/175876
14 https://doi.org/10.1088/2041-8205/719/2/l111
15 https://doi.org/10.1088/2041-8205/719/2/l167
16 https://doi.org/10.1103/physrevb.17.2901
17 https://doi.org/10.1103/physrevd.17.1524
18 https://doi.org/10.1103/physrevd.21.1494
19 https://doi.org/10.1103/physrevd.24.3048
20 https://doi.org/10.1103/physrevd.25.967
21 https://doi.org/10.1103/physrevd.29.2705
22 https://doi.org/10.1103/physrevd.66.014015
23 https://doi.org/10.1103/physrevd.71.054011
24 https://doi.org/10.1103/physrevd.73.074009
25 https://doi.org/10.1103/physrevd.77.023008
26 https://doi.org/10.1103/physrevd.78.045002
27 https://doi.org/10.1103/physrevd.80.125011
28 https://doi.org/10.1103/physrevlett.106.081101
29 https://doi.org/10.1103/physrevlett.24.775
30 https://doi.org/10.1111/j.1365-2966.2009.15938.x
31 https://doi.org/10.1111/j.1745-3933.2011.01015.x
32 https://doi.org/10.3367/ufnr.0161.199107a.0003
33 schema:datePublished 2011-09
34 schema:datePublishedReg 2011-09-01
35 schema:description The vortex structure of the “npe” phase of neutron stars with a 3P2 superfluid neutron condensate of Cooper pairs is discussed. It is shown that, as the star rotates, superfluid neutron vortex filaments described by a unitary ordering parameter develop in the “npe” phase. The entrainment of superconducting protons by the rotating superfluid neutrons is examined. The entrainment effect leads to the appearance of clusters of proton vortices around each neutron vortex and generates a magnetic field on the order of 1012 G. 3P2 neutron vortex filaments combine with quark semi-superfluid vortex filaments at the boundary of the “npe” and “CFL” phases. At the boundary of the “Aen” and “npe” phases, they combine with 1S0 neutron vortex filaments. In this way, a unified vortex structure is formed. The existence of this structure and its collective elastic oscillations explain the observed oscillations in the angular rotation velocity of pulsars.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N7d7bc07e4eef46fca8d85f04f1e2a2cf
40 N9c77d7b69fe54565818e06ccb6590aba
41 sg:journal.1136580
42 schema:name Vortex structure of neutron stars with triplet neutron superfluidity
43 schema:pagination 429
44 schema:productId N7e263842e62e4f3ab660d6aa3356edf4
45 Na57e810378e54beabc5bc43d7e4cbbcb
46 Nc3cedb096fa0456ca47299e485a14f64
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037597931
48 https://doi.org/10.1007/s10511-011-9193-6
49 schema:sdDatePublished 2019-04-10T16:46
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ncf672924028b4dab8f32641613709ae3
52 schema:url http://link.springer.com/10.1007%2Fs10511-011-9193-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N7d7bc07e4eef46fca8d85f04f1e2a2cf schema:volumeNumber 54
57 rdf:type schema:PublicationVolume
58 N7e263842e62e4f3ab660d6aa3356edf4 schema:name readcube_id
59 schema:value b31a8851fbeba90c46d16c092a0d37459f0993fd4b1aefa0fb8e6fa40711a207
60 rdf:type schema:PropertyValue
61 N98e6067305844709b28199487c4c9dae rdf:first sg:person.07410263443.20
62 rdf:rest rdf:nil
63 N9c77d7b69fe54565818e06ccb6590aba schema:issueNumber 3
64 rdf:type schema:PublicationIssue
65 Na2ffaba7e6cc4ef3b0dbe30c1d929a84 rdf:first sg:person.013044347401.71
66 rdf:rest N98e6067305844709b28199487c4c9dae
67 Na57e810378e54beabc5bc43d7e4cbbcb schema:name doi
68 schema:value 10.1007/s10511-011-9193-6
69 rdf:type schema:PropertyValue
70 Nc3cedb096fa0456ca47299e485a14f64 schema:name dimensions_id
71 schema:value pub.1037597931
72 rdf:type schema:PropertyValue
73 Ncf672924028b4dab8f32641613709ae3 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
79 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
80 rdf:type schema:DefinedTerm
81 sg:journal.1136580 schema:issn 0571-7256
82 1573-8191
83 schema:name Astrophysics
84 rdf:type schema:Periodical
85 sg:person.013044347401.71 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
86 schema:familyName Shahabasyan
87 schema:givenName K. M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044347401.71
89 rdf:type schema:Person
90 sg:person.07410263443.20 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
91 schema:familyName Shahabasyan
92 schema:givenName M. K.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410263443.20
94 rdf:type schema:Person
95 sg:pub.10.1038/224673a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019387878
96 https://doi.org/10.1038/224673a0
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/224872a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003534379
99 https://doi.org/10.1038/224872a0
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/225619a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051873696
102 https://doi.org/10.1038/225619a0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/256025a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019281125
105 https://doi.org/10.1038/256025a0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/35020010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007841592
108 https://doi.org/10.1038/35020010
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0550-3213(98)00668-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072784
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1086/148829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058480120
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1086/161616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058492906
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1086/162232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058493522
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1086/175876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507165
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/2041-8205/719/2/l111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028033718
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/2041-8205/719/2/l167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036407656
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.17.2901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060523642
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevd.17.1524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060685554
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevd.21.1494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687795
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevd.24.3048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689219
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevd.25.967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689771
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevd.29.2705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691294
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevd.66.014015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713053
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevd.71.054011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022587591
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevd.73.074009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212049
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevd.77.023008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019952355
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevd.78.045002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053343595
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevd.80.125011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035086179
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.106.081101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038828542
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.24.775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773545
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/j.1365-2966.2009.15938.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027971147
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/j.1745-3933.2011.01015.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034856468
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3367/ufnr.0161.199107a.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218520
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
159 schema:name Erevan State University, Yerevan, Armenia
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...