Fluctuational mechanism for the formation of proton vortices in the superfluid core of neutron stars View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

K. M. Shahabasyan, M. K. Shahabasyan

ABSTRACT

The Gibbs thermodynamic potential of a proton vortex interacting with the normal core of a neutron vortex of radius r << λ (λ is the penetration depth) that is parallel to it and has an outer boundary of radius b is calculated. It is shown that, under this assumption, the capture of only one vortex by the core is energetically favorable. The force acting on the proton vortex owing to the entrained current is found and it is always directed toward the core. The corresponding force for a proton antivortex is directed toward the outer boundary of the neutron vortex. The Ginzburg-Landau equation is solved for a vortex-antivortex system and its Gibbs function is calculated. It is shown that at large distances from the core, vortex-antivortex pairs can form because of fluctuations. Acted on by the entrainment current, the antivortex moves outward, while the vortex stays inside the neutron vortex. It is shown that the best conditions for fluctuational pair production, followed by separation, exist near the outer boundary. It is shown that new proton vortices can develop only in a region where the entrainment magnetic field strength H (ρ) > HC1 (HC1 is the lower critical field). More... »

PAGES

112-120

Journal

TITLE

Astrophysics

ISSUE

1

VOLUME

51

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10511-008-0012-7

DOI

http://dx.doi.org/10.1007/s10511-008-0012-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040005866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Erevan State University, Armenia", 
          "id": "http://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahabasyan", 
        "givenName": "K. M.", 
        "id": "sg:person.013044347401.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044347401.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erevan State University, Armenia", 
          "id": "http://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Erevan State University, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahabasyan", 
        "givenName": "M. K.", 
        "id": "sg:person.07410263443.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410263443.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "The Gibbs thermodynamic potential of a proton vortex interacting with the normal core of a neutron vortex of radius r << \u03bb (\u03bb is the penetration depth) that is parallel to it and has an outer boundary of radius b is calculated. It is shown that, under this assumption, the capture of only one vortex by the core is energetically favorable. The force acting on the proton vortex owing to the entrained current is found and it is always directed toward the core. The corresponding force for a proton antivortex is directed toward the outer boundary of the neutron vortex. The Ginzburg-Landau equation is solved for a vortex-antivortex system and its Gibbs function is calculated. It is shown that at large distances from the core, vortex-antivortex pairs can form because of fluctuations. Acted on by the entrainment current, the antivortex moves outward, while the vortex stays inside the neutron vortex. It is shown that the best conditions for fluctuational pair production, followed by separation, exist near the outer boundary. It is shown that new proton vortices can develop only in a region where the entrainment magnetic field strength H (\u03c1) > HC1 (HC1 is the lower critical field).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10511-008-0012-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136580", 
        "issn": [
          "0571-7256", 
          "1573-8191"
        ], 
        "name": "Astrophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "proton vortices", 
      "neutron vortices", 
      "vortex-antivortex pairs", 
      "outer boundary", 
      "magnetic field strength H", 
      "neutron stars", 
      "entrainment currents", 
      "superfluid core", 
      "fluctuational mechanisms", 
      "pair production", 
      "field strength H", 
      "large distances", 
      "normal core", 
      "strength H", 
      "radius R", 
      "antivortex", 
      "Ginzburg-Landau equation", 
      "corresponding force", 
      "Gibbs thermodynamic potential", 
      "radius b", 
      "stars", 
      "vortices", 
      "current", 
      "thermodynamic potential", 
      "core", 
      "fluctuations", 
      "boundaries", 
      "capture", 
      "force", 
      "distance", 
      "Gibbs function", 
      "pairs", 
      "formation", 
      "HC1", 
      "equations", 
      "separation", 
      "region", 
      "potential", 
      "system", 
      "function", 
      "mechanism", 
      "good condition", 
      "assumption", 
      "conditions", 
      "production", 
      "entrained current", 
      "proton antivortex", 
      "vortex-antivortex system", 
      "fluctuational pair production", 
      "new proton vortices", 
      "entrainment magnetic field strength H"
    ], 
    "name": "Fluctuational mechanism for the formation of proton vortices in the superfluid core of neutron stars", 
    "pagination": "112-120", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040005866"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10511-008-0012-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10511-008-0012-7", 
      "https://app.dimensions.ai/details/publication/pub.1040005866"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_465.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10511-008-0012-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10511-008-0012-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10511-008-0012-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10511-008-0012-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10511-008-0012-7'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      77 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10511-008-0012-7 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N47fa109f594745eca37a25055be79f99
4 schema:datePublished 2008-01
5 schema:datePublishedReg 2008-01-01
6 schema:description The Gibbs thermodynamic potential of a proton vortex interacting with the normal core of a neutron vortex of radius r << λ (λ is the penetration depth) that is parallel to it and has an outer boundary of radius b is calculated. It is shown that, under this assumption, the capture of only one vortex by the core is energetically favorable. The force acting on the proton vortex owing to the entrained current is found and it is always directed toward the core. The corresponding force for a proton antivortex is directed toward the outer boundary of the neutron vortex. The Ginzburg-Landau equation is solved for a vortex-antivortex system and its Gibbs function is calculated. It is shown that at large distances from the core, vortex-antivortex pairs can form because of fluctuations. Acted on by the entrainment current, the antivortex moves outward, while the vortex stays inside the neutron vortex. It is shown that the best conditions for fluctuational pair production, followed by separation, exist near the outer boundary. It is shown that new proton vortices can develop only in a region where the entrainment magnetic field strength H (ρ) > HC1 (HC1 is the lower critical field).
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0f715304c3a146cbb252087b969f2df8
11 N6167f883a5bf446ab590997e97f0f911
12 sg:journal.1136580
13 schema:keywords Gibbs function
14 Gibbs thermodynamic potential
15 Ginzburg-Landau equation
16 HC1
17 antivortex
18 assumption
19 boundaries
20 capture
21 conditions
22 core
23 corresponding force
24 current
25 distance
26 entrained current
27 entrainment currents
28 entrainment magnetic field strength H
29 equations
30 field strength H
31 fluctuational mechanisms
32 fluctuational pair production
33 fluctuations
34 force
35 formation
36 function
37 good condition
38 large distances
39 magnetic field strength H
40 mechanism
41 neutron stars
42 neutron vortices
43 new proton vortices
44 normal core
45 outer boundary
46 pair production
47 pairs
48 potential
49 production
50 proton antivortex
51 proton vortices
52 radius R
53 radius b
54 region
55 separation
56 stars
57 strength H
58 superfluid core
59 system
60 thermodynamic potential
61 vortex-antivortex pairs
62 vortex-antivortex system
63 vortices
64 schema:name Fluctuational mechanism for the formation of proton vortices in the superfluid core of neutron stars
65 schema:pagination 112-120
66 schema:productId N5c986c1f0d7c4b219bb8d333cc126e71
67 N6746a9bfaf064ac9b9a3144d6c662551
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040005866
69 https://doi.org/10.1007/s10511-008-0012-7
70 schema:sdDatePublished 2021-11-01T18:12
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nf0ba5f45d3bf43e0afdf06eb91d85255
73 schema:url https://doi.org/10.1007/s10511-008-0012-7
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0f715304c3a146cbb252087b969f2df8 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N10b4e638797445ccbc3a3f969b062635 rdf:first sg:person.07410263443.20
80 rdf:rest rdf:nil
81 N47fa109f594745eca37a25055be79f99 rdf:first sg:person.013044347401.71
82 rdf:rest N10b4e638797445ccbc3a3f969b062635
83 N5c986c1f0d7c4b219bb8d333cc126e71 schema:name doi
84 schema:value 10.1007/s10511-008-0012-7
85 rdf:type schema:PropertyValue
86 N6167f883a5bf446ab590997e97f0f911 schema:volumeNumber 51
87 rdf:type schema:PublicationVolume
88 N6746a9bfaf064ac9b9a3144d6c662551 schema:name dimensions_id
89 schema:value pub.1040005866
90 rdf:type schema:PropertyValue
91 Nf0ba5f45d3bf43e0afdf06eb91d85255 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
97 schema:name Other Physical Sciences
98 rdf:type schema:DefinedTerm
99 sg:journal.1136580 schema:issn 0571-7256
100 1573-8191
101 schema:name Astrophysics
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.013044347401.71 schema:affiliation grid-institutes:grid.21072.36
105 schema:familyName Shahabasyan
106 schema:givenName K. M.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044347401.71
108 rdf:type schema:Person
109 sg:person.07410263443.20 schema:affiliation grid-institutes:grid.21072.36
110 schema:familyName Shahabasyan
111 schema:givenName M. K.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410263443.20
113 rdf:type schema:Person
114 grid-institutes:grid.21072.36 schema:alternateName Erevan State University, Armenia
115 schema:name Erevan State University, Armenia
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...