A simple criterion for selecting disks with evidence for dust growth and settling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-13

AUTHORS

Yao Liu, Hongchi Wang, Thomas Henning

ABSTRACT

Dust growth and settling, as an initial step of planet formation in protoplanetary disks, have an important impact on the appearance of the spectral energy distribution (SED). Selecting a promising sample of disks with signs of these processes helps to guide future observations towards a better understanding of the initial conditions for planet formation and disk evolution. Using a standard flared disk model, we conducted a large parameter study to investigate the effects of various disk parameters on the overall shape of the SED. We found that the flaring index and scale height can be used to mimic the effects of dust evolution on the SED. The influences of these two parameters on the infrared excess are very similar to that caused by dust evolution which have been shown in previous simulations where grain growth and settling are treated directly. Based on a statistic analysis of all the models in our grid, we proposed a criterion of Ψ≥0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi \ge 0.6$\end{document} to diagnose signs of dust evolution, where Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi$\end{document} is a ratio defined by dividing a linearly interpolated (between 24μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$24~\upmu \mbox{m}$\end{document} and 1.3 mm) flux at 70 μm by the observed 70 μm photometry. We tested the applicability of our criterion with the class II disks in the Taurus star formation region. More... »

PAGES

208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0

DOI

http://dx.doi.org/10.1007/s10509-017-3190-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092212015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China", 
            "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hongchi", 
        "id": "sg:person.013235704716.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235704716.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henning", 
        "givenName": "Thomas", 
        "id": "sg:person.015136145631.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-13", 
    "datePublishedReg": "2017-10-13", 
    "description": "Dust growth and settling, as an initial step of planet formation in protoplanetary disks, have an important impact on the appearance of the spectral energy distribution (SED). Selecting a promising sample of disks with signs of these processes helps to guide future observations towards a better understanding of the initial conditions for planet formation and disk evolution. Using a standard flared disk model, we conducted a large parameter study to investigate the effects of various disk parameters on the overall shape of the SED. We found that the flaring index and scale height can be used to mimic the effects of dust evolution on the SED. The influences of these two parameters on the infrared excess are very similar to that caused by dust evolution which have been shown in previous simulations where grain growth and settling are treated directly. Based on a statistic analysis of all the models in our grid, we proposed a criterion of \u03a8\u22650.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPsi \\ge 0.6$\\end{document} to diagnose signs of dust evolution, where \u03a8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPsi$\\end{document} is a ratio defined by dividing a linearly interpolated (between 24\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$24~\\upmu \\mbox{m}$\\end{document} and 1.3\u00a0mm) flux at 70\u00a0\u03bcm by the observed 70\u00a0\u03bcm photometry. We tested the applicability of our criterion with the class II disks in the Taurus star formation region.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10509-017-3190-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8122389", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "362"
      }
    ], 
    "keywords": [
      "dust evolution", 
      "planet formation", 
      "formation region", 
      "settling", 
      "protoplanetary disks", 
      "evolution", 
      "future observations", 
      "initial conditions", 
      "important impact", 
      "disk evolution", 
      "previous simulations", 
      "dust growth", 
      "scale height", 
      "flux", 
      "formation", 
      "better understanding", 
      "overall shape", 
      "statistic analysis", 
      "region", 
      "distribution", 
      "model", 
      "parameter study", 
      "height", 
      "impact", 
      "excess", 
      "simulations", 
      "spectral energy distribution", 
      "samples", 
      "conditions", 
      "parameters", 
      "influence", 
      "grid", 
      "ratio", 
      "evidence", 
      "process", 
      "understanding", 
      "star formation regions", 
      "growth", 
      "index", 
      "simple criterion", 
      "shape", 
      "grain growth", 
      "analysis", 
      "study", 
      "applicability", 
      "Class II disks", 
      "appearance", 
      "energy distribution", 
      "promising samples", 
      "large parameter study", 
      "effect", 
      "infrared excess", 
      "disk model", 
      "initial step", 
      "signs", 
      "criteria", 
      "step", 
      "disk", 
      "disc parameters", 
      "photometry", 
      "observations", 
      "standard flared disk model", 
      "flared disk model", 
      "II disks", 
      "Taurus star formation region"
    ], 
    "name": "A simple criterion for selecting disks with evidence for dust growth and settling", 
    "pagination": "208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092212015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-017-3190-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-017-3190-0", 
      "https://app.dimensions.ai/details/publication/pub.1092212015"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_731.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10509-017-3190-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      90 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-017-3190-0 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N4c1b5d44fb4a4b21a5b70902f08f5dbc
4 schema:datePublished 2017-10-13
5 schema:datePublishedReg 2017-10-13
6 schema:description Dust growth and settling, as an initial step of planet formation in protoplanetary disks, have an important impact on the appearance of the spectral energy distribution (SED). Selecting a promising sample of disks with signs of these processes helps to guide future observations towards a better understanding of the initial conditions for planet formation and disk evolution. Using a standard flared disk model, we conducted a large parameter study to investigate the effects of various disk parameters on the overall shape of the SED. We found that the flaring index and scale height can be used to mimic the effects of dust evolution on the SED. The influences of these two parameters on the infrared excess are very similar to that caused by dust evolution which have been shown in previous simulations where grain growth and settling are treated directly. Based on a statistic analysis of all the models in our grid, we proposed a criterion of Ψ≥0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi \ge 0.6$\end{document} to diagnose signs of dust evolution, where Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi$\end{document} is a ratio defined by dividing a linearly interpolated (between 24μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$24~\upmu \mbox{m}$\end{document} and 1.3 mm) flux at 70 μm by the observed 70 μm photometry. We tested the applicability of our criterion with the class II disks in the Taurus star formation region.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N40a9f15c789c4f6fb6bec2dee36538e6
11 Ncf7199afbfec48a3b5ee8d0d30e6e8d1
12 sg:journal.1026094
13 schema:keywords Class II disks
14 II disks
15 Taurus star formation region
16 analysis
17 appearance
18 applicability
19 better understanding
20 conditions
21 criteria
22 disc parameters
23 disk
24 disk evolution
25 disk model
26 distribution
27 dust evolution
28 dust growth
29 effect
30 energy distribution
31 evidence
32 evolution
33 excess
34 flared disk model
35 flux
36 formation
37 formation region
38 future observations
39 grain growth
40 grid
41 growth
42 height
43 impact
44 important impact
45 index
46 influence
47 infrared excess
48 initial conditions
49 initial step
50 large parameter study
51 model
52 observations
53 overall shape
54 parameter study
55 parameters
56 photometry
57 planet formation
58 previous simulations
59 process
60 promising samples
61 protoplanetary disks
62 ratio
63 region
64 samples
65 scale height
66 settling
67 shape
68 signs
69 simple criterion
70 simulations
71 spectral energy distribution
72 standard flared disk model
73 star formation regions
74 statistic analysis
75 step
76 study
77 understanding
78 schema:name A simple criterion for selecting disks with evidence for dust growth and settling
79 schema:pagination 208
80 schema:productId N45150528f6d545d3861a293c35e1a8dd
81 N5265672c88a140478ccd4aa74a11aa77
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092212015
83 https://doi.org/10.1007/s10509-017-3190-0
84 schema:sdDatePublished 2022-01-01T18:42
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N2a68d40cbb9a4875b41a04f9570bfa92
87 schema:url https://doi.org/10.1007/s10509-017-3190-0
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N1fec4aa0998f45279783d41d68818727 rdf:first sg:person.013235704716.29
92 rdf:rest N72b5d89fa7c948f5ad8c584678c85342
93 N2a68d40cbb9a4875b41a04f9570bfa92 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N40a9f15c789c4f6fb6bec2dee36538e6 schema:volumeNumber 362
96 rdf:type schema:PublicationVolume
97 N45150528f6d545d3861a293c35e1a8dd schema:name doi
98 schema:value 10.1007/s10509-017-3190-0
99 rdf:type schema:PropertyValue
100 N4c1b5d44fb4a4b21a5b70902f08f5dbc rdf:first Nd6180724a1f8421592dfe6d784a69284
101 rdf:rest N1fec4aa0998f45279783d41d68818727
102 N5265672c88a140478ccd4aa74a11aa77 schema:name dimensions_id
103 schema:value pub.1092212015
104 rdf:type schema:PropertyValue
105 N72b5d89fa7c948f5ad8c584678c85342 rdf:first sg:person.015136145631.64
106 rdf:rest rdf:nil
107 Ncf7199afbfec48a3b5ee8d0d30e6e8d1 schema:issueNumber 11
108 rdf:type schema:PublicationIssue
109 Nd6180724a1f8421592dfe6d784a69284 schema:affiliation grid-institutes:grid.429508.2
110 schema:familyName Liu
111 schema:givenName Yao
112 rdf:type schema:Person
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
117 schema:name Astronomical and Space Sciences
118 rdf:type schema:DefinedTerm
119 sg:grant.8122389 http://pending.schema.org/fundedItem sg:pub.10.1007/s10509-017-3190-0
120 rdf:type schema:MonetaryGrant
121 sg:journal.1026094 schema:issn 0004-640X
122 1572-946X
123 schema:name Astrophysics and Space Science
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.013235704716.29 schema:affiliation grid-institutes:grid.9227.e
127 schema:familyName Wang
128 schema:givenName Hongchi
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235704716.29
130 rdf:type schema:Person
131 sg:person.015136145631.64 schema:affiliation grid-institutes:grid.429508.2
132 schema:familyName Henning
133 schema:givenName Thomas
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64
135 rdf:type schema:Person
136 grid-institutes:grid.429508.2 schema:alternateName Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
137 schema:name Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
138 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China
139 rdf:type schema:Organization
140 grid-institutes:grid.9227.e schema:alternateName Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China
141 schema:name Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...