A simple criterion for selecting disks with evidence for dust growth and settling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10-13

AUTHORS

Yao Liu, Hongchi Wang, Thomas Henning

ABSTRACT

Dust growth and settling, as an initial step of planet formation in protoplanetary disks, have an important impact on the appearance of the spectral energy distribution (SED). Selecting a promising sample of disks with signs of these processes helps to guide future observations towards a better understanding of the initial conditions for planet formation and disk evolution. Using a standard flared disk model, we conducted a large parameter study to investigate the effects of various disk parameters on the overall shape of the SED. We found that the flaring index and scale height can be used to mimic the effects of dust evolution on the SED. The influences of these two parameters on the infrared excess are very similar to that caused by dust evolution which have been shown in previous simulations where grain growth and settling are treated directly. Based on a statistic analysis of all the models in our grid, we proposed a criterion of Ψ≥0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi \ge 0.6$\end{document} to diagnose signs of dust evolution, where Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi$\end{document} is a ratio defined by dividing a linearly interpolated (between 24μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$24~\upmu \mbox{m}$\end{document} and 1.3 mm) flux at 70 μm by the observed 70 μm photometry. We tested the applicability of our criterion with the class II disks in the Taurus star formation region. More... »

PAGES

208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0

DOI

http://dx.doi.org/10.1007/s10509-017-3190-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092212015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China", 
            "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hongchi", 
        "id": "sg:person.013235704716.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235704716.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max Planck Institute for Astronomy, K\u00f6nigstuhl 17, 69117, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henning", 
        "givenName": "Thomas", 
        "id": "sg:person.015136145631.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-13", 
    "datePublishedReg": "2017-10-13", 
    "description": "Dust growth and settling, as an initial step of planet formation in protoplanetary disks, have an important impact on the appearance of the spectral energy distribution (SED). Selecting a promising sample of disks with signs of these processes helps to guide future observations towards a better understanding of the initial conditions for planet formation and disk evolution. Using a standard flared disk model, we conducted a large parameter study to investigate the effects of various disk parameters on the overall shape of the SED. We found that the flaring index and scale height can be used to mimic the effects of dust evolution on the SED. The influences of these two parameters on the infrared excess are very similar to that caused by dust evolution which have been shown in previous simulations where grain growth and settling are treated directly. Based on a statistic analysis of all the models in our grid, we proposed a criterion of \u03a8\u22650.6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPsi \\ge 0.6$\\end{document} to diagnose signs of dust evolution, where \u03a8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\varPsi$\\end{document} is a ratio defined by dividing a linearly interpolated (between 24\u03bcm\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$24~\\upmu \\mbox{m}$\\end{document} and 1.3\u00a0mm) flux at 70\u00a0\u03bcm by the observed 70\u00a0\u03bcm photometry. We tested the applicability of our criterion with the class II disks in the Taurus star formation region.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10509-017-3190-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8122389", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "362"
      }
    ], 
    "keywords": [
      "spectral energy distribution", 
      "dust evolution", 
      "planet formation", 
      "dust growth", 
      "star formation regions", 
      "Class II disks", 
      "infrared excess", 
      "protoplanetary disks", 
      "disk evolution", 
      "energy distribution", 
      "future observations", 
      "scale height", 
      "disk model", 
      "large parameter study", 
      "formation region", 
      "disc parameters", 
      "previous simulations", 
      "disk", 
      "initial conditions", 
      "photometry", 
      "overall shape", 
      "parameter study", 
      "evolution", 
      "flux", 
      "simple criterion", 
      "parameters", 
      "grain growth", 
      "formation", 
      "simulations", 
      "shape", 
      "settling", 
      "distribution", 
      "excess", 
      "region", 
      "model", 
      "effect", 
      "promising samples", 
      "ratio", 
      "height", 
      "important impact", 
      "samples", 
      "appearance", 
      "process", 
      "growth", 
      "better understanding", 
      "index", 
      "influence", 
      "applicability", 
      "conditions", 
      "initial step", 
      "step", 
      "signs", 
      "grid", 
      "understanding", 
      "analysis", 
      "evidence", 
      "study", 
      "impact", 
      "statistic analysis", 
      "criteria", 
      "observations"
    ], 
    "name": "A simple criterion for selecting disks with evidence for dust growth and settling", 
    "pagination": "208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092212015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-017-3190-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-017-3190-0", 
      "https://app.dimensions.ai/details/publication/pub.1092212015"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_732.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10509-017-3190-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-017-3190-0'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      86 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-017-3190-0 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Naf12f2723b904529856ffc1dacef68a7
4 schema:datePublished 2017-10-13
5 schema:datePublishedReg 2017-10-13
6 schema:description Dust growth and settling, as an initial step of planet formation in protoplanetary disks, have an important impact on the appearance of the spectral energy distribution (SED). Selecting a promising sample of disks with signs of these processes helps to guide future observations towards a better understanding of the initial conditions for planet formation and disk evolution. Using a standard flared disk model, we conducted a large parameter study to investigate the effects of various disk parameters on the overall shape of the SED. We found that the flaring index and scale height can be used to mimic the effects of dust evolution on the SED. The influences of these two parameters on the infrared excess are very similar to that caused by dust evolution which have been shown in previous simulations where grain growth and settling are treated directly. Based on a statistic analysis of all the models in our grid, we proposed a criterion of Ψ≥0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi \ge 0.6$\end{document} to diagnose signs of dust evolution, where Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varPsi$\end{document} is a ratio defined by dividing a linearly interpolated (between 24μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$24~\upmu \mbox{m}$\end{document} and 1.3 mm) flux at 70 μm by the observed 70 μm photometry. We tested the applicability of our criterion with the class II disks in the Taurus star formation region.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N11dec53b14a7490995b863baa1f52056
11 Nb7a89e9c92f04a20aca1ea1f92044b5c
12 sg:journal.1026094
13 schema:keywords Class II disks
14 analysis
15 appearance
16 applicability
17 better understanding
18 conditions
19 criteria
20 disc parameters
21 disk
22 disk evolution
23 disk model
24 distribution
25 dust evolution
26 dust growth
27 effect
28 energy distribution
29 evidence
30 evolution
31 excess
32 flux
33 formation
34 formation region
35 future observations
36 grain growth
37 grid
38 growth
39 height
40 impact
41 important impact
42 index
43 influence
44 infrared excess
45 initial conditions
46 initial step
47 large parameter study
48 model
49 observations
50 overall shape
51 parameter study
52 parameters
53 photometry
54 planet formation
55 previous simulations
56 process
57 promising samples
58 protoplanetary disks
59 ratio
60 region
61 samples
62 scale height
63 settling
64 shape
65 signs
66 simple criterion
67 simulations
68 spectral energy distribution
69 star formation regions
70 statistic analysis
71 step
72 study
73 understanding
74 schema:name A simple criterion for selecting disks with evidence for dust growth and settling
75 schema:pagination 208
76 schema:productId N395ea16418494b44adc968fd0652bc97
77 Nc0759ee7efb9448bb8236bbecacfff9e
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092212015
79 https://doi.org/10.1007/s10509-017-3190-0
80 schema:sdDatePublished 2022-05-20T07:33
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N56bc5b3bb36944648986da3d668f7849
83 schema:url https://doi.org/10.1007/s10509-017-3190-0
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N11dec53b14a7490995b863baa1f52056 schema:issueNumber 11
88 rdf:type schema:PublicationIssue
89 N36efe271593a49c5bc49aea42378bd36 rdf:first sg:person.015136145631.64
90 rdf:rest rdf:nil
91 N395ea16418494b44adc968fd0652bc97 schema:name doi
92 schema:value 10.1007/s10509-017-3190-0
93 rdf:type schema:PropertyValue
94 N56bc5b3bb36944648986da3d668f7849 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N693ecc3c14834893ab12704e9104c3e8 rdf:first sg:person.013235704716.29
97 rdf:rest N36efe271593a49c5bc49aea42378bd36
98 N7b975ff50a7f4e529279112f658f5df1 schema:affiliation grid-institutes:grid.429508.2
99 schema:familyName Liu
100 schema:givenName Yao
101 rdf:type schema:Person
102 Naf12f2723b904529856ffc1dacef68a7 rdf:first N7b975ff50a7f4e529279112f658f5df1
103 rdf:rest N693ecc3c14834893ab12704e9104c3e8
104 Nb7a89e9c92f04a20aca1ea1f92044b5c schema:volumeNumber 362
105 rdf:type schema:PublicationVolume
106 Nc0759ee7efb9448bb8236bbecacfff9e schema:name dimensions_id
107 schema:value pub.1092212015
108 rdf:type schema:PropertyValue
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
113 schema:name Astronomical and Space Sciences
114 rdf:type schema:DefinedTerm
115 sg:grant.8122389 http://pending.schema.org/fundedItem sg:pub.10.1007/s10509-017-3190-0
116 rdf:type schema:MonetaryGrant
117 sg:journal.1026094 schema:issn 0004-640X
118 1572-946X
119 schema:name Astrophysics and Space Science
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.013235704716.29 schema:affiliation grid-institutes:grid.9227.e
123 schema:familyName Wang
124 schema:givenName Hongchi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235704716.29
126 rdf:type schema:Person
127 sg:person.015136145631.64 schema:affiliation grid-institutes:grid.429508.2
128 schema:familyName Henning
129 schema:givenName Thomas
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136145631.64
131 rdf:type schema:Person
132 grid-institutes:grid.429508.2 schema:alternateName Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
133 schema:name Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
134 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China
135 rdf:type schema:Organization
136 grid-institutes:grid.9227.e schema:alternateName Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China
137 schema:name Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008, Nanjing, China
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...