Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10-29

AUTHORS

Yun Zhang, Hexi Baoyin, Junfeng Li, Derek C. Richardson, Stephen R. Schwartz

ABSTRACT

The behavior of debris ejected from asteroids after collisional disruptions has significant implications for asteroid evolution. Analytical approximations of the elliptic restricted three-body system show that the behavior of ejecta varies significantly with the orbital eccentricity and true anomaly of an asteroid. To study these orbital perturbative effects on collision outcomes, we conduct a series of low-speed collision simulations using a combination of an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body gravity algorithm and the soft-sphere discrete element method. The asteroid is modeled as a gravitational aggregate, which is one of the plausible structures for asteroids whose sizes are larger than several hundreds of meters. To reduce the effect of complicating factors raised by the mutual interaction between post-collision fragments on the outcomes, a low-resolution model and a set of frictionless material parameters are used in the first step of exploration. The results indicate that orbital perturbations on ejecta arising from the eccentricity and true anomaly of the target asteroid at the time of impact cause larger mass loss and lower the catastrophic disruption threshold (the specific energy required to disperse half the total system mass) in collision events. The “universal law” of catastrophic disruption derived by Stewart and Leinhardt (Astrophys. J. Lett. 691:L133–L137, 2009) can be applied to describe the collision outcomes of asteroids on elliptical heliocentric orbits. Through analyses of ejecta velocity distributions, we develop a semi-analytic description of escape speed from the asteroid’s surface in an elliptic restricted three-body system and show that resulting perturbations have long-term orbital effects on ejecta and can also have an indirect influence on the velocity field of post-fragments through interparticle collisions. Further exploration with a high-resolution model shows that the long-term perturbative effects systematically increase mass loss, regardless of the target’s material parameters and internal configuration, while indirect effect on mass loss is much more complicated and is enhanced when a coarse material or high-porosity model is used. More... »

PAGES

30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-015-2536-8

DOI

http://dx.doi.org/10.1007/s10509-015-2536-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013897979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baoyin", 
        "givenName": "Hexi", 
        "id": "sg:person.012710321240.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012710321240.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Junfeng", 
        "id": "sg:person.07347265605.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347265605.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Astronomy, University of Maryland, 20740-2421, College Park, MD, United States", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Astronomy, University of Maryland, 20740-2421, College Park, MD, United States"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richardson", 
        "givenName": "Derek C.", 
        "id": "sg:person.016250407215.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250407215.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Observatoire de la C\u00f4te d\u2019Azur, C.S. 34229, 06304, Nice Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Observatoire de la C\u00f4te d\u2019Azur, C.S. 34229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwartz", 
        "givenName": "Stephen R.", 
        "id": "sg:person.011005166351.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005166351.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10569-014-9590-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018024309", 
          "https://doi.org/10.1007/s10569-014-9590-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-011-9394-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039966055", 
          "https://doi.org/10.1007/s10569-011-9394-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005096511", 
          "https://doi.org/10.1038/nature01622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10035-012-0346-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010963589", 
          "https://doi.org/10.1007/s10035-012-0346-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002888853", 
          "https://doi.org/10.1038/30911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-004-5899-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025831861", 
          "https://doi.org/10.1007/s10569-004-5899-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022068265", 
          "https://doi.org/10.1007/bf01230350"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-29", 
    "datePublishedReg": "2015-10-29", 
    "description": "The behavior of debris ejected from asteroids after collisional disruptions has significant implications for asteroid evolution. Analytical approximations of the elliptic restricted three-body system show that the behavior of ejecta varies significantly with the orbital eccentricity and true anomaly of an asteroid. To study these orbital perturbative effects on collision outcomes, we conduct a series of low-speed collision simulations using a combination of an N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$N$\\end{document}-body gravity algorithm and the soft-sphere discrete element method. The asteroid is modeled as a gravitational aggregate, which is one of the plausible structures for asteroids whose sizes are larger than several hundreds of meters. To reduce the effect of complicating factors raised by the mutual interaction between post-collision fragments on the outcomes, a low-resolution model and a set of frictionless material parameters are used in the first step of exploration. The results indicate that orbital perturbations on ejecta arising from the eccentricity and true anomaly of the target asteroid at the time of impact cause larger mass loss and lower the catastrophic disruption threshold (the specific energy required to disperse half the total system mass) in collision events. The \u201cuniversal law\u201d of catastrophic disruption derived by Stewart and Leinhardt (Astrophys. J.\u00a0Lett. 691:L133\u2013L137, 2009) can be applied to describe the collision outcomes of asteroids on elliptical heliocentric orbits. Through analyses of ejecta velocity distributions, we develop a semi-analytic description of escape speed from the asteroid\u2019s surface in an elliptic restricted three-body system and show that resulting perturbations have long-term orbital effects on ejecta and can also have an indirect influence on the velocity field of post-fragments through interparticle collisions. Further exploration with a high-resolution model shows that the long-term perturbative effects systematically increase mass loss, regardless of the target\u2019s material parameters and internal configuration, while indirect effect on mass loss is much more complicated and is enhanced when a coarse material or high-porosity model is used.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10509-015-2536-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "360"
      }
    ], 
    "keywords": [
      "material parameters", 
      "behavior of debris", 
      "collision outcomes", 
      "collision simulations", 
      "soft-sphere discrete element method", 
      "discrete element method", 
      "element method", 
      "mass loss", 
      "elliptical heliocentric orbit", 
      "ejecta velocity distribution", 
      "velocity distribution", 
      "velocity field", 
      "interparticle collisions", 
      "high-resolution model", 
      "target material parameters", 
      "coarse material", 
      "high-porosity model", 
      "behavior", 
      "analytical approximation", 
      "system", 
      "eccentricity", 
      "perturbative effects", 
      "simulations", 
      "gravity algorithm", 
      "hundreds of meters", 
      "meters", 
      "mutual interaction", 
      "low-resolution models", 
      "model", 
      "parameters", 
      "first step", 
      "orbital perturbations", 
      "target asteroid", 
      "time of impact", 
      "large mass loss", 
      "catastrophic disruption threshold", 
      "disruption threshold", 
      "collision events", 
      "catastrophic disruption", 
      "heliocentric orbits", 
      "speed", 
      "asteroid surface", 
      "surface", 
      "internal configuration", 
      "configuration", 
      "materials", 
      "rubble-pile asteroids", 
      "debris", 
      "asteroids", 
      "collisional disruption", 
      "significant implications", 
      "asteroid evolution", 
      "evolution", 
      "approximation", 
      "three-body system", 
      "ejecta", 
      "orbital eccentricity", 
      "true anomaly", 
      "anomalies", 
      "effect", 
      "series", 
      "combination", 
      "algorithm", 
      "method", 
      "gravitational aggregates", 
      "aggregates", 
      "structure", 
      "size", 
      "hundreds", 
      "complicating factors", 
      "factors", 
      "interaction", 
      "set", 
      "step", 
      "exploration", 
      "results", 
      "perturbations", 
      "time", 
      "impact", 
      "loss", 
      "threshold", 
      "universal law", 
      "law", 
      "orbit", 
      "analysis", 
      "distribution", 
      "semi-analytic description", 
      "description", 
      "escape speed", 
      "orbital effects", 
      "influence", 
      "field", 
      "collisions", 
      "ellipticity", 
      "disruption", 
      "implications", 
      "outcomes", 
      "plausible structures", 
      "fragments", 
      "events", 
      "Stewart", 
      "indirect influence", 
      "further exploration", 
      "indirect effects", 
      "Leinhardt"
    ], 
    "name": "Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids", 
    "pagination": "30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013897979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-015-2536-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-015-2536-8", 
      "https://app.dimensions.ai/details/publication/pub.1013897979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_676.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10509-015-2536-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2536-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2536-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2536-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2536-8'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      22 PREDICATES      137 URIs      122 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-015-2536-8 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N15938fb9c4794a1bbc2be001d18bfbec
4 schema:citation sg:pub.10.1007/bf01230350
5 sg:pub.10.1007/s10035-012-0346-z
6 sg:pub.10.1007/s10569-004-5899-7
7 sg:pub.10.1007/s10569-011-9394-7
8 sg:pub.10.1007/s10569-014-9590-3
9 sg:pub.10.1038/30911
10 sg:pub.10.1038/nature01622
11 schema:datePublished 2015-10-29
12 schema:datePublishedReg 2015-10-29
13 schema:description The behavior of debris ejected from asteroids after collisional disruptions has significant implications for asteroid evolution. Analytical approximations of the elliptic restricted three-body system show that the behavior of ejecta varies significantly with the orbital eccentricity and true anomaly of an asteroid. To study these orbital perturbative effects on collision outcomes, we conduct a series of low-speed collision simulations using a combination of an N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N$\end{document}-body gravity algorithm and the soft-sphere discrete element method. The asteroid is modeled as a gravitational aggregate, which is one of the plausible structures for asteroids whose sizes are larger than several hundreds of meters. To reduce the effect of complicating factors raised by the mutual interaction between post-collision fragments on the outcomes, a low-resolution model and a set of frictionless material parameters are used in the first step of exploration. The results indicate that orbital perturbations on ejecta arising from the eccentricity and true anomaly of the target asteroid at the time of impact cause larger mass loss and lower the catastrophic disruption threshold (the specific energy required to disperse half the total system mass) in collision events. The “universal law” of catastrophic disruption derived by Stewart and Leinhardt (Astrophys. J. Lett. 691:L133–L137, 2009) can be applied to describe the collision outcomes of asteroids on elliptical heliocentric orbits. Through analyses of ejecta velocity distributions, we develop a semi-analytic description of escape speed from the asteroid’s surface in an elliptic restricted three-body system and show that resulting perturbations have long-term orbital effects on ejecta and can also have an indirect influence on the velocity field of post-fragments through interparticle collisions. Further exploration with a high-resolution model shows that the long-term perturbative effects systematically increase mass loss, regardless of the target’s material parameters and internal configuration, while indirect effect on mass loss is much more complicated and is enhanced when a coarse material or high-porosity model is used.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N549f67d9be14422b80cd32f8a76db15e
18 N9db9cf235ab64996851cf3efc814d1ab
19 sg:journal.1026094
20 schema:keywords Leinhardt
21 Stewart
22 aggregates
23 algorithm
24 analysis
25 analytical approximation
26 anomalies
27 approximation
28 asteroid evolution
29 asteroid surface
30 asteroids
31 behavior
32 behavior of debris
33 catastrophic disruption
34 catastrophic disruption threshold
35 coarse material
36 collision events
37 collision outcomes
38 collision simulations
39 collisional disruption
40 collisions
41 combination
42 complicating factors
43 configuration
44 debris
45 description
46 discrete element method
47 disruption
48 disruption threshold
49 distribution
50 eccentricity
51 effect
52 ejecta
53 ejecta velocity distribution
54 element method
55 elliptical heliocentric orbit
56 ellipticity
57 escape speed
58 events
59 evolution
60 exploration
61 factors
62 field
63 first step
64 fragments
65 further exploration
66 gravitational aggregates
67 gravity algorithm
68 heliocentric orbits
69 high-porosity model
70 high-resolution model
71 hundreds
72 hundreds of meters
73 impact
74 implications
75 indirect effects
76 indirect influence
77 influence
78 interaction
79 internal configuration
80 interparticle collisions
81 large mass loss
82 law
83 loss
84 low-resolution models
85 mass loss
86 material parameters
87 materials
88 meters
89 method
90 model
91 mutual interaction
92 orbit
93 orbital eccentricity
94 orbital effects
95 orbital perturbations
96 outcomes
97 parameters
98 perturbations
99 perturbative effects
100 plausible structures
101 results
102 rubble-pile asteroids
103 semi-analytic description
104 series
105 set
106 significant implications
107 simulations
108 size
109 soft-sphere discrete element method
110 speed
111 step
112 structure
113 surface
114 system
115 target asteroid
116 target material parameters
117 three-body system
118 threshold
119 time
120 time of impact
121 true anomaly
122 universal law
123 velocity distribution
124 velocity field
125 schema:name Effects of orbital ellipticity on collisional disruptions of rubble-pile asteroids
126 schema:pagination 30
127 schema:productId N02bdd7964e48477a98a2c60f98c43f8a
128 N86faa5dd70f245bab6062bfd6c7a0bf4
129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013897979
130 https://doi.org/10.1007/s10509-015-2536-8
131 schema:sdDatePublished 2022-06-01T22:13
132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
133 schema:sdPublisher Nab97e846607a4fe7abbda8e4e09282ee
134 schema:url https://doi.org/10.1007/s10509-015-2536-8
135 sgo:license sg:explorer/license/
136 sgo:sdDataset articles
137 rdf:type schema:ScholarlyArticle
138 N02bdd7964e48477a98a2c60f98c43f8a schema:name dimensions_id
139 schema:value pub.1013897979
140 rdf:type schema:PropertyValue
141 N15938fb9c4794a1bbc2be001d18bfbec rdf:first N565c17636776465bb679be5a69a8bf52
142 rdf:rest Ne2a81909ee3b49dbbcf68ffa28a8af24
143 N4f77a374498b4f309b33f7584f3e03df rdf:first sg:person.011005166351.35
144 rdf:rest rdf:nil
145 N549f67d9be14422b80cd32f8a76db15e schema:issueNumber 1
146 rdf:type schema:PublicationIssue
147 N565c17636776465bb679be5a69a8bf52 schema:affiliation grid-institutes:grid.12527.33
148 schema:familyName Zhang
149 schema:givenName Yun
150 rdf:type schema:Person
151 N83c1aeb35d3b456e8ebac5b55f170298 rdf:first sg:person.07347265605.84
152 rdf:rest Na6a011bc080545c4b3b1c5e9ad1962db
153 N86faa5dd70f245bab6062bfd6c7a0bf4 schema:name doi
154 schema:value 10.1007/s10509-015-2536-8
155 rdf:type schema:PropertyValue
156 N9db9cf235ab64996851cf3efc814d1ab schema:volumeNumber 360
157 rdf:type schema:PublicationVolume
158 Na6a011bc080545c4b3b1c5e9ad1962db rdf:first sg:person.016250407215.00
159 rdf:rest N4f77a374498b4f309b33f7584f3e03df
160 Nab97e846607a4fe7abbda8e4e09282ee schema:name Springer Nature - SN SciGraph project
161 rdf:type schema:Organization
162 Ne2a81909ee3b49dbbcf68ffa28a8af24 rdf:first sg:person.012710321240.32
163 rdf:rest N83c1aeb35d3b456e8ebac5b55f170298
164 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
165 schema:name Physical Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
168 schema:name Astronomical and Space Sciences
169 rdf:type schema:DefinedTerm
170 sg:journal.1026094 schema:issn 0004-640X
171 1572-946X
172 schema:name Astrophysics and Space Science
173 schema:publisher Springer Nature
174 rdf:type schema:Periodical
175 sg:person.011005166351.35 schema:affiliation grid-institutes:grid.462572.0
176 schema:familyName Schwartz
177 schema:givenName Stephen R.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005166351.35
179 rdf:type schema:Person
180 sg:person.012710321240.32 schema:affiliation grid-institutes:grid.12527.33
181 schema:familyName Baoyin
182 schema:givenName Hexi
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012710321240.32
184 rdf:type schema:Person
185 sg:person.016250407215.00 schema:affiliation grid-institutes:grid.164295.d
186 schema:familyName Richardson
187 schema:givenName Derek C.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250407215.00
189 rdf:type schema:Person
190 sg:person.07347265605.84 schema:affiliation grid-institutes:grid.12527.33
191 schema:familyName Li
192 schema:givenName Junfeng
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347265605.84
194 rdf:type schema:Person
195 sg:pub.10.1007/bf01230350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022068265
196 https://doi.org/10.1007/bf01230350
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s10035-012-0346-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010963589
199 https://doi.org/10.1007/s10035-012-0346-z
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s10569-004-5899-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025831861
202 https://doi.org/10.1007/s10569-004-5899-7
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s10569-011-9394-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039966055
205 https://doi.org/10.1007/s10569-011-9394-7
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s10569-014-9590-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018024309
208 https://doi.org/10.1007/s10569-014-9590-3
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/30911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002888853
211 https://doi.org/10.1038/30911
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature01622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005096511
214 https://doi.org/10.1038/nature01622
215 rdf:type schema:CreativeWork
216 grid-institutes:grid.12527.33 schema:alternateName School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People’s Republic of China
217 schema:name School of Aerospace Engineering, Tsinghua University, 100084, Beijing, People’s Republic of China
218 rdf:type schema:Organization
219 grid-institutes:grid.164295.d schema:alternateName Department of Astronomy, University of Maryland, 20740-2421, College Park, MD, United States
220 schema:name Department of Astronomy, University of Maryland, 20740-2421, College Park, MD, United States
221 rdf:type schema:Organization
222 grid-institutes:grid.462572.0 schema:alternateName Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, C.S. 34229, 06304, Nice Cedex 4, France
223 schema:name Lagrange Laboratory, University of Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, C.S. 34229, 06304, Nice Cedex 4, France
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...