Evolution of the rotational motion of space debris acted upon by eddy current torque View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

Hou-Yuan Lin, Chang-Yin Zhao

ABSTRACT

Finding analytical solutions to the eddy current torque produced by a conducting body rotating within a magnetic field is arduous. In this paper, the finite difference method is adopted to solve numerically the boundary problem regarding the distributions of eddy currents in determining eddy current torque. Through analysis of the solutions, this paper presents the expression of eddy current torque that applies to a model of arbitrary shape rotating around an arbitrary axis. The parameters of the physical properties of the rigid body are integrated into the eddy current torque tensor, the features of which are analogous to the inertia tensor. The elements in the tensor are constants for a specific rigid body; thus, in the expression, the torque is associated only with the relative angular velocity and magnetic field. The expression is used to investigate the evolution of the rotation of space debris subjected to eddy current torque, through numerical integration with the angular velocity of the variation of the geomagnetic field, which is assumed a dipole. The results explain the observed phenomenon of change in the spin decay rate. Moreover, the effects of gravity-gradient torque and orbit precession cause the self-spin of the space debris to resonate with the orbital motion and ultimately, to reach a steady state. More... »

PAGES

167

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-015-2396-2

DOI

http://dx.doi.org/10.1007/s10509-015-2396-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011547550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Purple Mountain Observatory, Chinese Academy of Sciences, 210008, Nanjing, China", 
            "Key Laboratory of Space Object and Debris Observation, PMO, CAS, 210008, Nanjing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Hou-Yuan", 
        "id": "sg:person.015744674516.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744674516.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purple Mountain Observatory", 
          "id": "https://www.grid.ac/institutes/grid.458497.3", 
          "name": [
            "Purple Mountain Observatory, Chinese Academy of Sciences, 210008, Nanjing, China", 
            "Key Laboratory of Space Object and Debris Observation, PMO, CAS, 210008, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Chang-Yin", 
        "id": "sg:person.012157662701.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157662701.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0032-0633(78)90003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009553775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-0633(78)90003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009553775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/90jb01949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017985733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2011.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038363837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actaastro.2012.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040594698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tane.1964.4502173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061488379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.130.3378.791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062473390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "Finding analytical solutions to the eddy current torque produced by a conducting body rotating within a magnetic field is arduous. In this paper, the finite difference method is adopted to solve numerically the boundary problem regarding the distributions of eddy currents in determining eddy current torque. Through analysis of the solutions, this paper presents the expression of eddy current torque that applies to a model of arbitrary shape rotating around an arbitrary axis. The parameters of the physical properties of the rigid body are integrated into the eddy current torque tensor, the features of which are analogous to the inertia tensor. The elements in the tensor are constants for a specific rigid body; thus, in the expression, the torque is associated only with the relative angular velocity and magnetic field. The expression is used to investigate the evolution of the rotation of space debris subjected to eddy current torque, through numerical integration with the angular velocity of the variation of the geomagnetic field, which is assumed a dipole. The results explain the observed phenomenon of change in the spin decay rate. Moreover, the effects of gravity-gradient torque and orbit precession cause the self-spin of the space debris to resonate with the orbital motion and ultimately, to reach a steady state.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s10509-015-2396-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "357"
      }
    ], 
    "name": "Evolution of the rotational motion of space debris acted upon by eddy current torque", 
    "pagination": "167", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "370481cd66a67d9dbd783ca624776c21539cbd03518af4b58befac10e7a97159"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-015-2396-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011547550"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-015-2396-2", 
      "https://app.dimensions.ai/details/publication/pub.1011547550"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10509-015-2396-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2396-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2396-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2396-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-015-2396-2'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-015-2396-2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ndb11c252dd20437ba94749efe8b256a0
4 schema:citation https://doi.org/10.1016/0032-0633(78)90003-x
5 https://doi.org/10.1016/j.actaastro.2012.03.004
6 https://doi.org/10.1016/j.asr.2011.02.003
7 https://doi.org/10.1029/90jb01949
8 https://doi.org/10.1109/tane.1964.4502173
9 https://doi.org/10.1126/science.130.3378.791
10 schema:datePublished 2015-06
11 schema:datePublishedReg 2015-06-01
12 schema:description Finding analytical solutions to the eddy current torque produced by a conducting body rotating within a magnetic field is arduous. In this paper, the finite difference method is adopted to solve numerically the boundary problem regarding the distributions of eddy currents in determining eddy current torque. Through analysis of the solutions, this paper presents the expression of eddy current torque that applies to a model of arbitrary shape rotating around an arbitrary axis. The parameters of the physical properties of the rigid body are integrated into the eddy current torque tensor, the features of which are analogous to the inertia tensor. The elements in the tensor are constants for a specific rigid body; thus, in the expression, the torque is associated only with the relative angular velocity and magnetic field. The expression is used to investigate the evolution of the rotation of space debris subjected to eddy current torque, through numerical integration with the angular velocity of the variation of the geomagnetic field, which is assumed a dipole. The results explain the observed phenomenon of change in the spin decay rate. Moreover, the effects of gravity-gradient torque and orbit precession cause the self-spin of the space debris to resonate with the orbital motion and ultimately, to reach a steady state.
13 schema:genre non_research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N7a89837f306b42438b64b3c48db2f48e
17 Na3799af806c04dd9883864b0e97cb780
18 sg:journal.1026094
19 schema:name Evolution of the rotational motion of space debris acted upon by eddy current torque
20 schema:pagination 167
21 schema:productId N3908030dd1814f84b8c22fadef16d2cf
22 N6244827dfa03431c9650e1d18b48a3f8
23 N8d8b9a1ed7cc4737926d8a3d6d16c579
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011547550
25 https://doi.org/10.1007/s10509-015-2396-2
26 schema:sdDatePublished 2019-04-10T13:07
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nb2a28a7194734be481d513a049204fff
29 schema:url http://link.springer.com/10.1007/s10509-015-2396-2
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N3374e5fb4743447eb9bbd44ff4f015a2 rdf:first sg:person.012157662701.23
34 rdf:rest rdf:nil
35 N3908030dd1814f84b8c22fadef16d2cf schema:name dimensions_id
36 schema:value pub.1011547550
37 rdf:type schema:PropertyValue
38 N6244827dfa03431c9650e1d18b48a3f8 schema:name readcube_id
39 schema:value 370481cd66a67d9dbd783ca624776c21539cbd03518af4b58befac10e7a97159
40 rdf:type schema:PropertyValue
41 N7a89837f306b42438b64b3c48db2f48e schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 N8d8b9a1ed7cc4737926d8a3d6d16c579 schema:name doi
44 schema:value 10.1007/s10509-015-2396-2
45 rdf:type schema:PropertyValue
46 Na3799af806c04dd9883864b0e97cb780 schema:volumeNumber 357
47 rdf:type schema:PublicationVolume
48 Nb2a28a7194734be481d513a049204fff schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Ndb11c252dd20437ba94749efe8b256a0 rdf:first sg:person.015744674516.13
51 rdf:rest N3374e5fb4743447eb9bbd44ff4f015a2
52 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
53 schema:name Physical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
56 schema:name Other Physical Sciences
57 rdf:type schema:DefinedTerm
58 sg:journal.1026094 schema:issn 0004-640X
59 1572-946X
60 schema:name Astrophysics and Space Science
61 rdf:type schema:Periodical
62 sg:person.012157662701.23 schema:affiliation https://www.grid.ac/institutes/grid.458497.3
63 schema:familyName Zhao
64 schema:givenName Chang-Yin
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012157662701.23
66 rdf:type schema:Person
67 sg:person.015744674516.13 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
68 schema:familyName Lin
69 schema:givenName Hou-Yuan
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015744674516.13
71 rdf:type schema:Person
72 https://doi.org/10.1016/0032-0633(78)90003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009553775
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/j.actaastro.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040594698
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/j.asr.2011.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038363837
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1029/90jb01949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017985733
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1109/tane.1964.4502173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061488379
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1126/science.130.3378.791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062473390
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
85 schema:name Key Laboratory of Space Object and Debris Observation, PMO, CAS, 210008, Nanjing, China
86 Purple Mountain Observatory, Chinese Academy of Sciences, 210008, Nanjing, China
87 University of Chinese Academy of Sciences, 100049, Beijing, China
88 rdf:type schema:Organization
89 https://www.grid.ac/institutes/grid.458497.3 schema:alternateName Purple Mountain Observatory
90 schema:name Key Laboratory of Space Object and Debris Observation, PMO, CAS, 210008, Nanjing, China
91 Purple Mountain Observatory, Chinese Academy of Sciences, 210008, Nanjing, China
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...