Constraining the gravitational redshift of a neutron star from the Σ-meson well depth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Xian-Feng Zhao

ABSTRACT

The effect of the Σ-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of from −30 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the makes the gravitational redshift as a function of Mmax /R increase, the higher the the less the change in the gravitational redshift. More... »

PAGES

139-144

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4

DOI

http://dx.doi.org/10.1007/s10509-010-0498-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016937405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411671.4", 
          "name": [
            "Department of Electronics Engineering, Chuzhou University, 239000, Chuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xian-Feng", 
        "id": "sg:person.012515230353.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515230353.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2005.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2005.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12036-010-0006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008150712", 
          "https://doi.org/10.1007/s12036-010-0006-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12036-010-0006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008150712", 
          "https://doi.org/10.1007/s12036-010-0006-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.61.054603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008955442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.61.054603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008955442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019677460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.53.1416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.53.1416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90105-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030644467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90105-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030644467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.62.034311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031653658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.62.034311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031653658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2005.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032386526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.74.064613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041090499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.74.064613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041090499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9474(95)00358-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042672787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(96)00023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044252699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/163253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058494543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/164206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058495496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.46.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060667080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.46.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060667080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.58.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060671114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.58.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060671114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.112.895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063128616"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "The effect of the \u03a3-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of from \u221230 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the makes the gravitational redshift as a function of Mmax /R increase, the higher the the less the change in the gravitational redshift.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10509-010-0498-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "332"
      }
    ], 
    "name": "Constraining the gravitational redshift of a neutron star from the \u03a3-meson well depth", 
    "pagination": "139-144", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50b2aa8d91ca2b5d68643279cf47aaa238df59ec9862a208f9ef5519a7ee74f6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-010-0498-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016937405"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-010-0498-4", 
      "https://app.dimensions.ai/details/publication/pub.1016937405"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10509-010-0498-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-010-0498-4 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N08d3554e44c54cabb671d4c4039785e8
4 schema:citation sg:pub.10.1007/s12036-010-0006-9
5 https://doi.org/10.1016/0370-1573(89)90105-1
6 https://doi.org/10.1016/0375-9474(95)00358-8
7 https://doi.org/10.1016/j.nuclphysa.2005.04.025
8 https://doi.org/10.1016/j.nuclphysa.2005.12.018
9 https://doi.org/10.1016/j.physrep.2007.08.002
10 https://doi.org/10.1016/s0370-1573(96)00023-3
11 https://doi.org/10.1086/163253
12 https://doi.org/10.1086/164206
13 https://doi.org/10.1103/physrevc.46.322
14 https://doi.org/10.1103/physrevc.53.1416
15 https://doi.org/10.1103/physrevc.58.1306
16 https://doi.org/10.1103/physrevc.61.054603
17 https://doi.org/10.1103/physrevc.62.034311
18 https://doi.org/10.1103/physrevc.74.064613
19 https://doi.org/10.1103/physrevlett.67.2414
20 https://doi.org/10.1143/ptp.112.895
21 schema:datePublished 2011-03
22 schema:datePublishedReg 2011-03-01
23 schema:description The effect of the Σ-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of from −30 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the makes the gravitational redshift as a function of Mmax /R increase, the higher the the less the change in the gravitational redshift.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N09d682456b25451f80f58c44ef62397f
28 Nd5655606e3824a26819a1566c7611f0f
29 sg:journal.1026094
30 schema:name Constraining the gravitational redshift of a neutron star from the Σ-meson well depth
31 schema:pagination 139-144
32 schema:productId N3e472a95a5f0425397351b58a8e162ad
33 N3e86939608ee4d78ad6444f59087dc35
34 Nda508cff8c304920bba4bfcd6eb4737f
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016937405
36 https://doi.org/10.1007/s10509-010-0498-4
37 schema:sdDatePublished 2019-04-10T22:24
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nc7a18aec3a734a849b983126cff10f1d
40 schema:url http://link.springer.com/10.1007/s10509-010-0498-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N08d3554e44c54cabb671d4c4039785e8 rdf:first sg:person.012515230353.35
45 rdf:rest rdf:nil
46 N09d682456b25451f80f58c44ef62397f schema:volumeNumber 332
47 rdf:type schema:PublicationVolume
48 N3e472a95a5f0425397351b58a8e162ad schema:name dimensions_id
49 schema:value pub.1016937405
50 rdf:type schema:PropertyValue
51 N3e86939608ee4d78ad6444f59087dc35 schema:name readcube_id
52 schema:value 50b2aa8d91ca2b5d68643279cf47aaa238df59ec9862a208f9ef5519a7ee74f6
53 rdf:type schema:PropertyValue
54 Nc7a18aec3a734a849b983126cff10f1d schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nd5655606e3824a26819a1566c7611f0f schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 Nda508cff8c304920bba4bfcd6eb4737f schema:name doi
59 schema:value 10.1007/s10509-010-0498-4
60 rdf:type schema:PropertyValue
61 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
65 schema:name Astronomical and Space Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1026094 schema:issn 0004-640X
68 1572-946X
69 schema:name Astrophysics and Space Science
70 rdf:type schema:Periodical
71 sg:person.012515230353.35 schema:affiliation https://www.grid.ac/institutes/grid.411671.4
72 schema:familyName Zhao
73 schema:givenName Xian-Feng
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515230353.35
75 rdf:type schema:Person
76 sg:pub.10.1007/s12036-010-0006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008150712
77 https://doi.org/10.1007/s12036-010-0006-9
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0370-1573(89)90105-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644467
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0375-9474(95)00358-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042672787
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.nuclphysa.2005.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002334213
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.nuclphysa.2005.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032386526
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.physrep.2007.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019677460
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0370-1573(96)00023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044252699
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1086/163253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058494543
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1086/164206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058495496
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevc.46.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060667080
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevc.53.1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792561
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevc.58.1306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060671114
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevc.61.054603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008955442
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevc.62.034311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031653658
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevc.74.064613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041090499
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.67.2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803393
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1143/ptp.112.895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063128616
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.411671.4 schema:alternateName Chuzhou University
112 schema:name Department of Electronics Engineering, Chuzhou University, 239000, Chuzhou, China
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...