Constraining the gravitational redshift of a neutron star from the Σ-meson well depth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Xian-Feng Zhao

ABSTRACT

The effect of the Σ-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of from −30 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the makes the gravitational redshift as a function of Mmax /R increase, the higher the the less the change in the gravitational redshift. More... »

PAGES

139-144

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4

DOI

http://dx.doi.org/10.1007/s10509-010-0498-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016937405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chuzhou University", 
          "id": "https://www.grid.ac/institutes/grid.411671.4", 
          "name": [
            "Department of Electronics Engineering, Chuzhou University, 239000, Chuzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xian-Feng", 
        "id": "sg:person.012515230353.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515230353.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2005.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2005.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12036-010-0006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008150712", 
          "https://doi.org/10.1007/s12036-010-0006-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12036-010-0006-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008150712", 
          "https://doi.org/10.1007/s12036-010-0006-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.61.054603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008955442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.61.054603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008955442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019677460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.53.1416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.53.1416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020792561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90105-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030644467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90105-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030644467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.62.034311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031653658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.62.034311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031653658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2005.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032386526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.74.064613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041090499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.74.064613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041090499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9474(95)00358-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042672787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(96)00023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044252699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/163253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058494543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/164206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058495496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.46.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060667080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.46.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060667080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.58.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060671114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.58.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060671114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.112.895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063128616"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "The effect of the \u03a3-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of from \u221230 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the makes the gravitational redshift as a function of Mmax /R increase, the higher the the less the change in the gravitational redshift.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10509-010-0498-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "332"
      }
    ], 
    "name": "Constraining the gravitational redshift of a neutron star from the \u03a3-meson well depth", 
    "pagination": "139-144", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50b2aa8d91ca2b5d68643279cf47aaa238df59ec9862a208f9ef5519a7ee74f6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-010-0498-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016937405"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-010-0498-4", 
      "https://app.dimensions.ai/details/publication/pub.1016937405"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10509-010-0498-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-010-0498-4'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-010-0498-4 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N6360c415e3964640a63104ef2087bea6
4 schema:citation sg:pub.10.1007/s12036-010-0006-9
5 https://doi.org/10.1016/0370-1573(89)90105-1
6 https://doi.org/10.1016/0375-9474(95)00358-8
7 https://doi.org/10.1016/j.nuclphysa.2005.04.025
8 https://doi.org/10.1016/j.nuclphysa.2005.12.018
9 https://doi.org/10.1016/j.physrep.2007.08.002
10 https://doi.org/10.1016/s0370-1573(96)00023-3
11 https://doi.org/10.1086/163253
12 https://doi.org/10.1086/164206
13 https://doi.org/10.1103/physrevc.46.322
14 https://doi.org/10.1103/physrevc.53.1416
15 https://doi.org/10.1103/physrevc.58.1306
16 https://doi.org/10.1103/physrevc.61.054603
17 https://doi.org/10.1103/physrevc.62.034311
18 https://doi.org/10.1103/physrevc.74.064613
19 https://doi.org/10.1103/physrevlett.67.2414
20 https://doi.org/10.1143/ptp.112.895
21 schema:datePublished 2011-03
22 schema:datePublishedReg 2011-03-01
23 schema:description The effect of the Σ-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of from −30 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the makes the gravitational redshift as a function of Mmax /R increase, the higher the the less the change in the gravitational redshift.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N0c6f8d5b7b234ac283d5613d7da03bf2
28 N58625d36d783460e860c78165eba3f98
29 sg:journal.1026094
30 schema:name Constraining the gravitational redshift of a neutron star from the Σ-meson well depth
31 schema:pagination 139-144
32 schema:productId N05fff327a29e431bb0417121137b2fc2
33 N5df53bd060dd438e9dd3ef25f670f6bf
34 Nc2647915a0b74aabb28991964a371210
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016937405
36 https://doi.org/10.1007/s10509-010-0498-4
37 schema:sdDatePublished 2019-04-10T22:24
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nca27cb623b344a87acb1b67dda8c223c
40 schema:url http://link.springer.com/10.1007/s10509-010-0498-4
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N05fff327a29e431bb0417121137b2fc2 schema:name readcube_id
45 schema:value 50b2aa8d91ca2b5d68643279cf47aaa238df59ec9862a208f9ef5519a7ee74f6
46 rdf:type schema:PropertyValue
47 N0c6f8d5b7b234ac283d5613d7da03bf2 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N58625d36d783460e860c78165eba3f98 schema:volumeNumber 332
50 rdf:type schema:PublicationVolume
51 N5df53bd060dd438e9dd3ef25f670f6bf schema:name doi
52 schema:value 10.1007/s10509-010-0498-4
53 rdf:type schema:PropertyValue
54 N6360c415e3964640a63104ef2087bea6 rdf:first sg:person.012515230353.35
55 rdf:rest rdf:nil
56 Nc2647915a0b74aabb28991964a371210 schema:name dimensions_id
57 schema:value pub.1016937405
58 rdf:type schema:PropertyValue
59 Nca27cb623b344a87acb1b67dda8c223c schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
65 schema:name Astronomical and Space Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1026094 schema:issn 0004-640X
68 1572-946X
69 schema:name Astrophysics and Space Science
70 rdf:type schema:Periodical
71 sg:person.012515230353.35 schema:affiliation https://www.grid.ac/institutes/grid.411671.4
72 schema:familyName Zhao
73 schema:givenName Xian-Feng
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515230353.35
75 rdf:type schema:Person
76 sg:pub.10.1007/s12036-010-0006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008150712
77 https://doi.org/10.1007/s12036-010-0006-9
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0370-1573(89)90105-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644467
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0375-9474(95)00358-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042672787
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.nuclphysa.2005.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002334213
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.nuclphysa.2005.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032386526
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.physrep.2007.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019677460
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0370-1573(96)00023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044252699
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1086/163253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058494543
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1086/164206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058495496
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevc.46.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060667080
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevc.53.1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792561
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevc.58.1306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060671114
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevc.61.054603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008955442
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevc.62.034311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031653658
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevc.74.064613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041090499
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevlett.67.2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803393
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1143/ptp.112.895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063128616
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.411671.4 schema:alternateName Chuzhou University
112 schema:name Department of Electronics Engineering, Chuzhou University, 239000, Chuzhou, China
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...