Higher Dimensional FRW Cosmological Models in Self-Creation Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01

AUTHORS

R. Venkateswarlu, K. Pavan Kumar

ABSTRACT

The field equations of Barber's (1982) second self-creation theory of gravitation are solved for 5D Friedmann-Robertson-Walker space time using perfect fluid energy momentum tensor. By assuming an equation of state p= ε ρ, (0 ≤ ε ≤ 1), the solutions of the field equations, in different scenarios, in Barber's second self-creation theory are presented and discussed. Some properties of these models are also discussed. More... »

PAGES

73-77

Journal

TITLE

Astrophysics and Space Science

ISSUE

1-4

VOLUME

301

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3

DOI

http://dx.doi.org/10.1007/s10509-006-7304-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022266424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "GITAM University", 
          "id": "https://www.grid.ac/institutes/grid.411710.2", 
          "name": [
            "Department of Mathematics, GIFT, GITAM, Visakhapatnam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkateswarlu", 
        "givenName": "R.", 
        "id": "sg:person.07546141167.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546141167.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GITAM University", 
          "id": "https://www.grid.ac/institutes/grid.411710.2", 
          "name": [
            "Department of Mathematics, GIFT, GITAM, Visakhapatnam, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "K. Pavan", 
        "id": "sg:person.015214261232.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015214261232.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00637431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007519165", 
          "https://doi.org/10.1007/bf00637431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00637431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007519165", 
          "https://doi.org/10.1007/bf00637431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00640002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011745223", 
          "https://doi.org/10.1007/bf00640002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00640002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011745223", 
          "https://doi.org/10.1007/bf00640002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00756918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019191447", 
          "https://doi.org/10.1007/bf00756918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00756918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019191447", 
          "https://doi.org/10.1007/bf00756918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00756918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019191447", 
          "https://doi.org/10.1007/bf00756918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00643809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038006815", 
          "https://doi.org/10.1007/bf00643809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00643809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038006815", 
          "https://doi.org/10.1007/bf00643809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00643809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038006815", 
          "https://doi.org/10.1007/bf00643809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02846104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038694179", 
          "https://doi.org/10.1007/bf02846104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02846104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038694179", 
          "https://doi.org/10.1007/bf02846104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:astr.0000005123.68634.b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043136661", 
          "https://doi.org/10.1023/b:astr.0000005123.68634.b8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00636864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045804122", 
          "https://doi.org/10.1007/bf00636864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00636864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045804122", 
          "https://doi.org/10.1007/bf00636864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00642359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052513745", 
          "https://doi.org/10.1007/bf00642359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00642359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052513745", 
          "https://doi.org/10.1007/bf00642359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.21.2167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.21.2167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00653794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085138009", 
          "https://doi.org/10.1007/bf00653794"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "The field equations of Barber's (1982) second self-creation theory of gravitation are solved for 5D Friedmann-Robertson-Walker space time using perfect fluid energy momentum tensor. By assuming an equation of state p= \u03b5 \u03c1, (0 \u2264 \u03b5 \u2264 1), the solutions of the field equations, in different scenarios, in Barber's second self-creation theory are presented and discussed. Some properties of these models are also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10509-006-7304-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "301"
      }
    ], 
    "name": "Higher Dimensional FRW Cosmological Models in Self-Creation Theory", 
    "pagination": "73-77", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a150e49f3b68257a83ff4873e12fd07a1eca1b9d6f2ead1b17255fd42c3ed4f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-006-7304-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022266424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-006-7304-3", 
      "https://app.dimensions.ai/details/publication/pub.1022266424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72847_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10509-006-7304-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-006-7304-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2a52afbe53c748e493cddf648ff7d739
4 schema:citation sg:pub.10.1007/bf00636864
5 sg:pub.10.1007/bf00637431
6 sg:pub.10.1007/bf00640002
7 sg:pub.10.1007/bf00642359
8 sg:pub.10.1007/bf00643809
9 sg:pub.10.1007/bf00653794
10 sg:pub.10.1007/bf00756918
11 sg:pub.10.1007/bf02846104
12 sg:pub.10.1023/b:astr.0000005123.68634.b8
13 https://doi.org/10.1103/physrevd.21.2167
14 schema:datePublished 2006-01
15 schema:datePublishedReg 2006-01-01
16 schema:description The field equations of Barber's (1982) second self-creation theory of gravitation are solved for 5D Friedmann-Robertson-Walker space time using perfect fluid energy momentum tensor. By assuming an equation of state p= ε ρ, (0 ≤ ε ≤ 1), the solutions of the field equations, in different scenarios, in Barber's second self-creation theory are presented and discussed. Some properties of these models are also discussed.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N008914bfcc9d4fc09f3a23a5b35c687a
21 Nc301b69374854f329877d0ae3fe6ba71
22 sg:journal.1026094
23 schema:name Higher Dimensional FRW Cosmological Models in Self-Creation Theory
24 schema:pagination 73-77
25 schema:productId Nca8714a190284e5abc013dd68695cb1f
26 Ncc2bef198ade40c19ec5d1ebc0a312f2
27 Nf85e1fd19482440abfdd1ecfea762c15
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022266424
29 https://doi.org/10.1007/s10509-006-7304-3
30 schema:sdDatePublished 2019-04-11T12:53
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N49de6b3fc2914258ab1c0625ed68d038
33 schema:url http://link.springer.com/10.1007/s10509-006-7304-3
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N008914bfcc9d4fc09f3a23a5b35c687a schema:issueNumber 1-4
38 rdf:type schema:PublicationIssue
39 N2a52afbe53c748e493cddf648ff7d739 rdf:first sg:person.07546141167.31
40 rdf:rest N9df2b628a3b04a0f8df5cf26e9323c75
41 N49de6b3fc2914258ab1c0625ed68d038 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N9df2b628a3b04a0f8df5cf26e9323c75 rdf:first sg:person.015214261232.98
44 rdf:rest rdf:nil
45 Nc301b69374854f329877d0ae3fe6ba71 schema:volumeNumber 301
46 rdf:type schema:PublicationVolume
47 Nca8714a190284e5abc013dd68695cb1f schema:name readcube_id
48 schema:value 6a150e49f3b68257a83ff4873e12fd07a1eca1b9d6f2ead1b17255fd42c3ed4f
49 rdf:type schema:PropertyValue
50 Ncc2bef198ade40c19ec5d1ebc0a312f2 schema:name dimensions_id
51 schema:value pub.1022266424
52 rdf:type schema:PropertyValue
53 Nf85e1fd19482440abfdd1ecfea762c15 schema:name doi
54 schema:value 10.1007/s10509-006-7304-3
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1026094 schema:issn 0004-640X
63 1572-946X
64 schema:name Astrophysics and Space Science
65 rdf:type schema:Periodical
66 sg:person.015214261232.98 schema:affiliation https://www.grid.ac/institutes/grid.411710.2
67 schema:familyName Kumar
68 schema:givenName K. Pavan
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015214261232.98
70 rdf:type schema:Person
71 sg:person.07546141167.31 schema:affiliation https://www.grid.ac/institutes/grid.411710.2
72 schema:familyName Venkateswarlu
73 schema:givenName R.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546141167.31
75 rdf:type schema:Person
76 sg:pub.10.1007/bf00636864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045804122
77 https://doi.org/10.1007/bf00636864
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf00637431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007519165
80 https://doi.org/10.1007/bf00637431
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf00640002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011745223
83 https://doi.org/10.1007/bf00640002
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf00642359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052513745
86 https://doi.org/10.1007/bf00642359
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00643809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038006815
89 https://doi.org/10.1007/bf00643809
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00653794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138009
92 https://doi.org/10.1007/bf00653794
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf00756918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019191447
95 https://doi.org/10.1007/bf00756918
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02846104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038694179
98 https://doi.org/10.1007/bf02846104
99 rdf:type schema:CreativeWork
100 sg:pub.10.1023/b:astr.0000005123.68634.b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043136661
101 https://doi.org/10.1023/b:astr.0000005123.68634.b8
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevd.21.2167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687884
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.411710.2 schema:alternateName GITAM University
106 schema:name Department of Mathematics, GIFT, GITAM, Visakhapatnam, India
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...