Ontology type: schema:ScholarlyArticle
2006-01
AUTHORSR. Venkateswarlu, K. Pavan Kumar
ABSTRACTThe field equations of Barber's (1982) second self-creation theory of gravitation are solved for 5D Friedmann-Robertson-Walker space time using perfect fluid energy momentum tensor. By assuming an equation of state p= ε ρ, (0 ≤ ε ≤ 1), the solutions of the field equations, in different scenarios, in Barber's second self-creation theory are presented and discussed. Some properties of these models are also discussed. More... »
PAGES73-77
http://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3
DOIhttp://dx.doi.org/10.1007/s10509-006-7304-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022266424
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "GITAM University",
"id": "https://www.grid.ac/institutes/grid.411710.2",
"name": [
"Department of Mathematics, GIFT, GITAM, Visakhapatnam, India"
],
"type": "Organization"
},
"familyName": "Venkateswarlu",
"givenName": "R.",
"id": "sg:person.07546141167.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546141167.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "GITAM University",
"id": "https://www.grid.ac/institutes/grid.411710.2",
"name": [
"Department of Mathematics, GIFT, GITAM, Visakhapatnam, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "K. Pavan",
"id": "sg:person.015214261232.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015214261232.98"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00637431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007519165",
"https://doi.org/10.1007/bf00637431"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00637431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007519165",
"https://doi.org/10.1007/bf00637431"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00640002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011745223",
"https://doi.org/10.1007/bf00640002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00640002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011745223",
"https://doi.org/10.1007/bf00640002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00756918",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019191447",
"https://doi.org/10.1007/bf00756918"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00756918",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019191447",
"https://doi.org/10.1007/bf00756918"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00756918",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019191447",
"https://doi.org/10.1007/bf00756918"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00643809",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038006815",
"https://doi.org/10.1007/bf00643809"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00643809",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038006815",
"https://doi.org/10.1007/bf00643809"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00643809",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038006815",
"https://doi.org/10.1007/bf00643809"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02846104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038694179",
"https://doi.org/10.1007/bf02846104"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02846104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038694179",
"https://doi.org/10.1007/bf02846104"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:astr.0000005123.68634.b8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043136661",
"https://doi.org/10.1023/b:astr.0000005123.68634.b8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00636864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045804122",
"https://doi.org/10.1007/bf00636864"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00636864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045804122",
"https://doi.org/10.1007/bf00636864"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00642359",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052513745",
"https://doi.org/10.1007/bf00642359"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00642359",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052513745",
"https://doi.org/10.1007/bf00642359"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.21.2167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060687884"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.21.2167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060687884"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00653794",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085138009",
"https://doi.org/10.1007/bf00653794"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-01",
"datePublishedReg": "2006-01-01",
"description": "The field equations of Barber's (1982) second self-creation theory of gravitation are solved for 5D Friedmann-Robertson-Walker space time using perfect fluid energy momentum tensor. By assuming an equation of state p= \u03b5 \u03c1, (0 \u2264 \u03b5 \u2264 1), the solutions of the field equations, in different scenarios, in Barber's second self-creation theory are presented and discussed. Some properties of these models are also discussed.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10509-006-7304-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026094",
"issn": [
"0004-640X",
"1572-946X"
],
"name": "Astrophysics and Space Science",
"type": "Periodical"
},
{
"issueNumber": "1-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "301"
}
],
"name": "Higher Dimensional FRW Cosmological Models in Self-Creation Theory",
"pagination": "73-77",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6a150e49f3b68257a83ff4873e12fd07a1eca1b9d6f2ead1b17255fd42c3ed4f"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10509-006-7304-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022266424"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10509-006-7304-3",
"https://app.dimensions.ai/details/publication/pub.1022266424"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72847_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s10509-006-7304-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-006-7304-3'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES