The Converter Mechanism of Particle Acceleration and Its Applications to the Unidentified Egret Sources View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-06

AUTHORS

E. V. Derishev, F. A. Aharonian, V. V. Kocharovsky, Vl. V. Kocharovsky

ABSTRACT

We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars. More... »

PAGES

21-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3

DOI

http://dx.doi.org/10.1007/s10509-005-7572-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017044980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derishev", 
        "givenName": "E. V.", 
        "id": "sg:person.010421317160.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010421317160.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Saupfercheckweg 1, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aharonian", 
        "givenName": "F. A.", 
        "id": "sg:person.01354457257.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharovsky", 
        "givenName": "V. V.", 
        "id": "sg:person.010431471533.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431471533.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharovsky", 
        "givenName": "Vl. V.", 
        "id": "sg:person.0616141737.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616141737.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0034-4885/64/4/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012807271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2001.04851.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017129743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022666355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022666355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027641893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027641893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.68.043003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031461100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.68.043003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031461100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.023005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047090739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.023005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047090739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/173397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058504687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/176448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV\u2013TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10509-005-7572-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "297"
      }
    ], 
    "name": "The Converter Mechanism of Particle Acceleration and Its Applications to the Unidentified Egret Sources", 
    "pagination": "21-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51359365ecf475c7f3011fcb6833871dee85c5328788e02cc0dee4c75de8a6f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-005-7572-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017044980"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-005-7572-3", 
      "https://app.dimensions.ai/details/publication/pub.1017044980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10509-005-7572-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-005-7572-3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N81161aafa2804636907dee871c0639b8
4 schema:citation https://doi.org/10.1046/j.1365-8711.2001.04851.x
5 https://doi.org/10.1086/173397
6 https://doi.org/10.1086/176448
7 https://doi.org/10.1088/0034-4885/64/4/201
8 https://doi.org/10.1103/physrevd.66.023005
9 https://doi.org/10.1103/physrevd.68.043003
10 https://doi.org/10.1103/physrevlett.75.386
11 https://doi.org/10.1103/physrevlett.80.3911
12 schema:datePublished 2005-06
13 schema:datePublishedReg 2005-06-01
14 schema:description We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N01e2b26132504248b60a235ecb5b75c4
19 N02cfd1b0109844a0bb8b2eadb30496aa
20 sg:journal.1026094
21 schema:name The Converter Mechanism of Particle Acceleration and Its Applications to the Unidentified Egret Sources
22 schema:pagination 21-30
23 schema:productId N241a364e5b364e35a302f5600bfca416
24 Nb8ebe56bd2dc4cdc98ffc4aeaa5363ef
25 Nc5142d24a82c44009bd53c0b3c9bbd93
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044980
27 https://doi.org/10.1007/s10509-005-7572-3
28 schema:sdDatePublished 2019-04-11T14:27
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb91bb71c8d51417fa4149783b483005d
31 schema:url http://link.springer.com/10.1007/s10509-005-7572-3
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N01e2b26132504248b60a235ecb5b75c4 schema:issueNumber 1-4
36 rdf:type schema:PublicationIssue
37 N02cfd1b0109844a0bb8b2eadb30496aa schema:volumeNumber 297
38 rdf:type schema:PublicationVolume
39 N241a364e5b364e35a302f5600bfca416 schema:name doi
40 schema:value 10.1007/s10509-005-7572-3
41 rdf:type schema:PropertyValue
42 N29867173a1214dae8de1cc69b6d2a49e rdf:first sg:person.0616141737.03
43 rdf:rest rdf:nil
44 N2e67d9eeb1d5408a8a2f10f5329a134a rdf:first sg:person.010431471533.19
45 rdf:rest N29867173a1214dae8de1cc69b6d2a49e
46 N436c5f2f919a40189b14708ee5afe433 rdf:first sg:person.01354457257.24
47 rdf:rest N2e67d9eeb1d5408a8a2f10f5329a134a
48 N81161aafa2804636907dee871c0639b8 rdf:first sg:person.010421317160.50
49 rdf:rest N436c5f2f919a40189b14708ee5afe433
50 Nb8ebe56bd2dc4cdc98ffc4aeaa5363ef schema:name dimensions_id
51 schema:value pub.1017044980
52 rdf:type schema:PropertyValue
53 Nb91bb71c8d51417fa4149783b483005d schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nc5142d24a82c44009bd53c0b3c9bbd93 schema:name readcube_id
56 schema:value 51359365ecf475c7f3011fcb6833871dee85c5328788e02cc0dee4c75de8a6f9
57 rdf:type schema:PropertyValue
58 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
62 schema:name Other Physical Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1026094 schema:issn 0004-640X
65 1572-946X
66 schema:name Astrophysics and Space Science
67 rdf:type schema:Periodical
68 sg:person.010421317160.50 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
69 schema:familyName Derishev
70 schema:givenName E. V.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010421317160.50
72 rdf:type schema:Person
73 sg:person.010431471533.19 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
74 schema:familyName Kocharovsky
75 schema:givenName V. V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431471533.19
77 rdf:type schema:Person
78 sg:person.01354457257.24 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
79 schema:familyName Aharonian
80 schema:givenName F. A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24
82 rdf:type schema:Person
83 sg:person.0616141737.03 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
84 schema:familyName Kocharovsky
85 schema:givenName Vl. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616141737.03
87 rdf:type schema:Person
88 https://doi.org/10.1046/j.1365-8711.2001.04851.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017129743
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1086/173397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058504687
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1086/176448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507737
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1088/0034-4885/64/4/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012807271
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevd.66.023005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047090739
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevd.68.043003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031461100
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.75.386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022666355
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.80.3911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027641893
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.410472.4 schema:alternateName Institute of Applied Physics
105 schema:name Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.419604.e schema:alternateName Max Planck Institute for Nuclear Physics
108 schema:name Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...