The Converter Mechanism of Particle Acceleration and Its Applications to the Unidentified Egret Sources View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-06

AUTHORS

E. V. Derishev, F. A. Aharonian, V. V. Kocharovsky, Vl. V. Kocharovsky

ABSTRACT

We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration.The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars. More... »

PAGES

21-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3

DOI

http://dx.doi.org/10.1007/s10509-005-7572-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017044980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derishev", 
        "givenName": "E. V.", 
        "id": "sg:person.010421317160.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010421317160.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Kernphysik, Saupfercheckweg 1, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Saupfercheckweg 1, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aharonian", 
        "givenName": "F. A.", 
        "id": "sg:person.01354457257.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharovsky", 
        "givenName": "V. V.", 
        "id": "sg:person.010431471533.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431471533.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharovsky", 
        "givenName": "Vl. V.", 
        "id": "sg:person.0616141737.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616141737.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration.The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV\u2013TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10509-005-7572-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "297"
      }
    ], 
    "keywords": [
      "unidentified EGRET sources", 
      "converter mechanism", 
      "EGRET sources", 
      "high-latitude unidentified EGRET sources", 
      "high-energy particles", 
      "gamma-ray bursts", 
      "gamma-ray radiation", 
      "active galactic nuclei", 
      "diffusive shock acceleration", 
      "magnetic field lines", 
      "large photon energies", 
      "energy gain factor", 
      "synchrotron photons", 
      "galactic nuclei", 
      "cosmic rays", 
      "relativistic outflows", 
      "particle acceleration", 
      "accompanying radiation", 
      "relativistic jets", 
      "shock acceleration", 
      "field lines", 
      "neutral state", 
      "energy range", 
      "photon energy", 
      "particle loss", 
      "maximum energy", 
      "radiation", 
      "gain factor", 
      "particles", 
      "energy", 
      "acceleration", 
      "microquasars", 
      "blazars", 
      "photons", 
      "GeV", 
      "rays", 
      "source", 
      "state", 
      "bursts", 
      "jet", 
      "nucleus", 
      "outflow", 
      "angle", 
      "properties", 
      "distinctive features", 
      "range", 
      "mechanism", 
      "distribution", 
      "possibility", 
      "lines", 
      "applications", 
      "conversion", 
      "features", 
      "conditions", 
      "loss", 
      "place", 
      "increase", 
      "number", 
      "opportunities", 
      "reduction", 
      "factors", 
      "implications", 
      "multiple photon-induced conversions", 
      "photon-induced conversions", 
      "collimated distribution", 
      "standard diffusive shock acceleration", 
      "peculiar radiation", 
      "axis relativistic jets", 
      "typical relativistic-jet sources", 
      "relativistic-jet sources"
    ], 
    "name": "The Converter Mechanism of Particle Acceleration and Its Applications to the Unidentified Egret Sources", 
    "pagination": "21-30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017044980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10509-005-7572-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10509-005-7572-3", 
      "https://app.dimensions.ai/details/publication/pub.1017044980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_398.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10509-005-7572-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10509-005-7572-3'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      97 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10509-005-7572-3 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:0299
4 schema:author Nda551cf79a674b2da9c077c90c9088cc
5 schema:datePublished 2005-06
6 schema:datePublishedReg 2005-06-01
7 schema:description We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration.The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1ea21a641cb742268989db75ebddf573
12 Ne8bb38aec2984fdf862f686cafef673c
13 sg:journal.1026094
14 schema:keywords EGRET sources
15 GeV
16 acceleration
17 accompanying radiation
18 active galactic nuclei
19 angle
20 applications
21 axis relativistic jets
22 blazars
23 bursts
24 collimated distribution
25 conditions
26 conversion
27 converter mechanism
28 cosmic rays
29 diffusive shock acceleration
30 distinctive features
31 distribution
32 energy
33 energy gain factor
34 energy range
35 factors
36 features
37 field lines
38 gain factor
39 galactic nuclei
40 gamma-ray bursts
41 gamma-ray radiation
42 high-energy particles
43 high-latitude unidentified EGRET sources
44 implications
45 increase
46 jet
47 large photon energies
48 lines
49 loss
50 magnetic field lines
51 maximum energy
52 mechanism
53 microquasars
54 multiple photon-induced conversions
55 neutral state
56 nucleus
57 number
58 opportunities
59 outflow
60 particle acceleration
61 particle loss
62 particles
63 peculiar radiation
64 photon energy
65 photon-induced conversions
66 photons
67 place
68 possibility
69 properties
70 radiation
71 range
72 rays
73 reduction
74 relativistic jets
75 relativistic outflows
76 relativistic-jet sources
77 shock acceleration
78 source
79 standard diffusive shock acceleration
80 state
81 synchrotron photons
82 typical relativistic-jet sources
83 unidentified EGRET sources
84 schema:name The Converter Mechanism of Particle Acceleration and Its Applications to the Unidentified Egret Sources
85 schema:pagination 21-30
86 schema:productId N8566dad4346e4d5d91e0522c38f64b09
87 Ne58ba84e9264486d8e4468a34916b38e
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044980
89 https://doi.org/10.1007/s10509-005-7572-3
90 schema:sdDatePublished 2021-11-01T18:08
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nae5e07b0bc5247cc923ea43bc9009dd0
93 schema:url https://doi.org/10.1007/s10509-005-7572-3
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N1ea21a641cb742268989db75ebddf573 schema:issueNumber 1-4
98 rdf:type schema:PublicationIssue
99 N241d9c2e709e46bc9a41f76f2f23ad36 rdf:first sg:person.01354457257.24
100 rdf:rest Nf84a5ea480a441c7988c334f235cdf5c
101 N25093803d0054595a7bfc40ec48f8cd1 rdf:first sg:person.0616141737.03
102 rdf:rest rdf:nil
103 N8566dad4346e4d5d91e0522c38f64b09 schema:name doi
104 schema:value 10.1007/s10509-005-7572-3
105 rdf:type schema:PropertyValue
106 Nae5e07b0bc5247cc923ea43bc9009dd0 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nda551cf79a674b2da9c077c90c9088cc rdf:first sg:person.010421317160.50
109 rdf:rest N241d9c2e709e46bc9a41f76f2f23ad36
110 Ne58ba84e9264486d8e4468a34916b38e schema:name dimensions_id
111 schema:value pub.1017044980
112 rdf:type schema:PropertyValue
113 Ne8bb38aec2984fdf862f686cafef673c schema:volumeNumber 297
114 rdf:type schema:PublicationVolume
115 Nf84a5ea480a441c7988c334f235cdf5c rdf:first sg:person.010431471533.19
116 rdf:rest N25093803d0054595a7bfc40ec48f8cd1
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
121 schema:name Astronomical and Space Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
124 schema:name Other Physical Sciences
125 rdf:type schema:DefinedTerm
126 sg:journal.1026094 schema:issn 0004-640X
127 1572-946X
128 schema:name Astrophysics and Space Science
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.010421317160.50 schema:affiliation grid-institutes:grid.410472.4
132 schema:familyName Derishev
133 schema:givenName E. V.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010421317160.50
135 rdf:type schema:Person
136 sg:person.010431471533.19 schema:affiliation grid-institutes:grid.410472.4
137 schema:familyName Kocharovsky
138 schema:givenName V. V.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431471533.19
140 rdf:type schema:Person
141 sg:person.01354457257.24 schema:affiliation grid-institutes:grid.419604.e
142 schema:familyName Aharonian
143 schema:givenName F. A.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24
145 rdf:type schema:Person
146 sg:person.0616141737.03 schema:affiliation grid-institutes:grid.410472.4
147 schema:familyName Kocharovsky
148 schema:givenName Vl. V.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616141737.03
150 rdf:type schema:Person
151 grid-institutes:grid.410472.4 schema:alternateName Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia
152 schema:name Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia
153 rdf:type schema:Organization
154 grid-institutes:grid.419604.e schema:alternateName Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany
155 schema:name Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...