Fluid-dynamic equations for reacting gas mixtures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-02

AUTHORS

Marzia Bisi, Maria Groppi, Giampiero Spiga

ABSTRACT

Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results.

PAGES

43-62

References to SciGraph publications

Journal

TITLE

Applications of Mathematics

ISSUE

1

VOLUME

50

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10492-005-0003-5

DOI

http://dx.doi.org/10.1007/s10492-005-0003-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020844940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipart. di Matematica, Universit\u00e0 di Parma, Via D\u2019Azeglio 85, 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bisi", 
        "givenName": "Marzia", 
        "id": "sg:person.07365727065.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365727065.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipart. di Matematica, Universit\u00e0 di Parma, Via D\u2019Azeglio 85, 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Groppi", 
        "givenName": "Maria", 
        "id": "sg:person.010026004025.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026004025.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipart. di Matematica, Universit\u00e0 di Parma, Via D\u2019Azeglio 85, 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spiga", 
        "givenName": "Giampiero", 
        "id": "sg:person.012650736763.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650736763.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-4371(99)00336-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004214334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001610100066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017972967", 
          "https://doi.org/10.1007/s001610100066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001610100066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017972967", 
          "https://doi.org/10.1007/s001610100066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019194113816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021650995", 
          "https://doi.org/10.1023/a:1019194113816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/tt-100105368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030563619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1135/cccc19753421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062749379"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10492-005-0003-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1046615", 
        "issn": [
          "0862-7940", 
          "1572-9109"
        ], 
        "name": "Applications of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Fluid-dynamic equations for reacting gas mixtures", 
    "pagination": "43-62", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "635165ce1b3b230dbc337fc82bc149228d72d8eab667a2dc37fa7026614b64f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10492-005-0003-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020844940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10492-005-0003-5", 
      "https://app.dimensions.ai/details/publication/pub.1020844940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10492-005-0003-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10492-005-0003-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10492-005-0003-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10492-005-0003-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10492-005-0003-5'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10492-005-0003-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8b8ba8f0eb5f4256af244b5b370951e5
4 schema:citation sg:pub.10.1007/s001610100066
5 sg:pub.10.1023/a:1019194113816
6 https://doi.org/10.1016/s0378-4371(99)00336-2
7 https://doi.org/10.1081/tt-100105368
8 https://doi.org/10.1135/cccc19753421
9 schema:datePublished 2005-02
10 schema:datePublishedReg 2005-02-01
11 schema:description Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N990e33939bb1438ca0dc524e094a474b
16 Nf53d209463214bfe9d5dd7b922fd0b1e
17 sg:journal.1046615
18 schema:name Fluid-dynamic equations for reacting gas mixtures
19 schema:pagination 43-62
20 schema:productId N2be2f13559454b19844712e74bdef735
21 N590b83ef34cf4772a7bc31d521d63eaf
22 Nb5861546fb56462f8cc86925ac3b9a54
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020844940
24 https://doi.org/10.1007/s10492-005-0003-5
25 schema:sdDatePublished 2019-04-10T21:31
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Naff8c9bbacb54ea4879213257afa3edb
28 schema:url http://link.springer.com/10.1007/s10492-005-0003-5
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N2be2f13559454b19844712e74bdef735 schema:name readcube_id
33 schema:value 635165ce1b3b230dbc337fc82bc149228d72d8eab667a2dc37fa7026614b64f5
34 rdf:type schema:PropertyValue
35 N590b83ef34cf4772a7bc31d521d63eaf schema:name doi
36 schema:value 10.1007/s10492-005-0003-5
37 rdf:type schema:PropertyValue
38 N8b8ba8f0eb5f4256af244b5b370951e5 rdf:first sg:person.07365727065.28
39 rdf:rest Ndbb6aa04ae3d4bc6937b5fc304efe42e
40 N990e33939bb1438ca0dc524e094a474b schema:volumeNumber 50
41 rdf:type schema:PublicationVolume
42 Nadd0819e47814057a2226737e6ccc898 rdf:first sg:person.012650736763.15
43 rdf:rest rdf:nil
44 Naff8c9bbacb54ea4879213257afa3edb schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nb5861546fb56462f8cc86925ac3b9a54 schema:name dimensions_id
47 schema:value pub.1020844940
48 rdf:type schema:PropertyValue
49 Ndbb6aa04ae3d4bc6937b5fc304efe42e rdf:first sg:person.010026004025.09
50 rdf:rest Nadd0819e47814057a2226737e6ccc898
51 Nf53d209463214bfe9d5dd7b922fd0b1e schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1046615 schema:issn 0862-7940
60 1572-9109
61 schema:name Applications of Mathematics
62 rdf:type schema:Periodical
63 sg:person.010026004025.09 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
64 schema:familyName Groppi
65 schema:givenName Maria
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026004025.09
67 rdf:type schema:Person
68 sg:person.012650736763.15 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
69 schema:familyName Spiga
70 schema:givenName Giampiero
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012650736763.15
72 rdf:type schema:Person
73 sg:person.07365727065.28 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
74 schema:familyName Bisi
75 schema:givenName Marzia
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365727065.28
77 rdf:type schema:Person
78 sg:pub.10.1007/s001610100066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017972967
79 https://doi.org/10.1007/s001610100066
80 rdf:type schema:CreativeWork
81 sg:pub.10.1023/a:1019194113816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021650995
82 https://doi.org/10.1023/a:1019194113816
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0378-4371(99)00336-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004214334
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1081/tt-100105368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030563619
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1135/cccc19753421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062749379
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
91 schema:name Dipart. di Matematica, Università di Parma, Via D’Azeglio 85, 43100, Parma, Italy
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...