FGCH: a fast and grid based clustering algorithm for hybrid data stream View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jinyin Chen, Xiang Lin, Qi Xuan, Yun Xiang

ABSTRACT

Streaming large volumes of data has a wide range of real-world applications, e.g., video flows, internet calls, and online games etc. Thus, fast and real-time data stream processing is important. Traditionally, data clustering algorithms are efficient and effective to mine information from large data. However, they are mostly not suitable for online data stream clustering. Therefore, in this work, we propose a novel fast and grid based clustering algorithm for hybrid data stream (FGCH). Specifically, we have made the following main contributions: 1), we develop a non-uniform attenuation model to enhance the resistance to noise; 2), we propose a similarity calculation method for hybrid data, which can calculate the similarity more efficiently and accurately; and 3), we present a novel clustering center fast determination algorithm (CCFD), which can automatically determine the number, center, and radius of clusters. Our technique is compared with several state-of-art clustering algorithms. The experimental results show that our technique can achieve more than better clustering accuracy on average. Meanwhile, the running time is shorter compared with the closest algorithm. More... »

PAGES

1228-1244

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10489-018-1324-x

DOI

http://dx.doi.org/10.1007/s10489-018-1324-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107899741


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "The College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jinyin", 
        "id": "sg:person.011005650160.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005650160.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "The College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Xiang", 
        "id": "sg:person.013313755020.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013313755020.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "The College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xuan", 
        "givenName": "Qi", 
        "id": "sg:person.01177056556.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177056556.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "The College of Information Engineering, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Yun", 
        "id": "sg:person.014357027635.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357027635.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.knosys.2016.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001435732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005266597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007487638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-014-0526-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008917987", 
          "https://doi.org/10.1007/s10489-014-0526-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.is.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009307610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-11056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009655103", 
          "https://doi.org/10.1007/978-3-319-11056-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-11056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009655103", 
          "https://doi.org/10.1007/978-3-319-11056-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012088469-8.50075-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011229469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2522968.2522981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011836058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2011.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020692772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.01.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023245406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012722442-8/50016-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025616991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1242072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027692695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.01.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-015-0675-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028716342", 
          "https://doi.org/10.1007/s10489-015-0675-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-013-0659-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030144595", 
          "https://doi.org/10.1007/s10115-013-0659-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2013.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030343095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2020408.2020555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031146203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-006-0260-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041584936", 
          "https://doi.org/10.1007/s00180-006-0260-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-87481-2_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046891092", 
          "https://doi.org/10.1007/978-3-540-87481-2_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2016.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048630243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2695664.2695674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049794230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.781637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.192473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2002.1019208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/06-ba104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2528080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069973928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/amt-9-347-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072660977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.02.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084098372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2017.2679725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084868276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2017.2696998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085466334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.03.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085742316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0939-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085936281", 
          "https://doi.org/10.1007/s10489-017-0939-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0939-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085936281", 
          "https://doi.org/10.1007/s10489-017-0939-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972764.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2010.5586136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094341952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icis.2008.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094837994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2017.2784394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099864671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2018.2801854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100848983"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Streaming large volumes of data has a wide range of real-world applications, e.g., video flows, internet calls, and online games etc. Thus, fast and real-time data stream processing is important. Traditionally, data clustering algorithms are efficient and effective to mine information from large data. However, they are mostly not suitable for online data stream clustering. Therefore, in this work, we propose a novel fast and grid based clustering algorithm for hybrid data stream (FGCH). Specifically, we have made the following main contributions: 1), we develop a non-uniform attenuation model to enhance the resistance to noise; 2), we propose a similarity calculation method for hybrid data, which can calculate the similarity more efficiently and accurately; and 3), we present a novel clustering center fast determination algorithm (CCFD), which can automatically determine the number, center, and radius of clusters. Our technique is compared with several state-of-art clustering algorithms. The experimental results show that our technique can achieve more than better clustering accuracy on average. Meanwhile, the running time is shorter compared with the closest algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10489-018-1324-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136076", 
        "issn": [
          "0924-669X", 
          "1573-7497"
        ], 
        "name": "Applied Intelligence", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "FGCH: a fast and grid based clustering algorithm for hybrid data stream", 
    "pagination": "1228-1244", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2feb350ad23eab9c2b9468648beacdbe2b0fdf459b44e2eb5e86b8dc1ae362df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10489-018-1324-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107899741"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10489-018-1324-x", 
      "https://app.dimensions.ai/details/publication/pub.1107899741"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70040_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10489-018-1324-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1324-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1324-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1324-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1324-x'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10489-018-1324-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc10e057168ef45f9ba59b224070f8692
4 schema:citation sg:pub.10.1007/978-3-319-11056-1
5 sg:pub.10.1007/978-3-540-87481-2_41
6 sg:pub.10.1007/s00180-006-0260-0
7 sg:pub.10.1007/s10115-013-0659-1
8 sg:pub.10.1007/s10489-014-0526-0
9 sg:pub.10.1007/s10489-015-0675-9
10 sg:pub.10.1007/s10489-017-0939-7
11 https://doi.org/10.1016/b978-012088469-8.50075-9
12 https://doi.org/10.1016/b978-012722442-8/50016-1
13 https://doi.org/10.1016/j.eswa.2005.11.017
14 https://doi.org/10.1016/j.eswa.2011.01.074
15 https://doi.org/10.1016/j.eswa.2016.09.020
16 https://doi.org/10.1016/j.ins.2016.01.071
17 https://doi.org/10.1016/j.ins.2016.12.004
18 https://doi.org/10.1016/j.is.2016.06.007
19 https://doi.org/10.1016/j.knosys.2016.12.025
20 https://doi.org/10.1016/j.neucom.2013.04.011
21 https://doi.org/10.1016/j.neucom.2017.02.078
22 https://doi.org/10.1016/j.neucom.2017.03.081
23 https://doi.org/10.1016/j.patcog.2011.07.006
24 https://doi.org/10.1016/j.patcog.2016.04.018
25 https://doi.org/10.1109/2.781637
26 https://doi.org/10.1109/34.192473
27 https://doi.org/10.1109/cec.2010.5586136
28 https://doi.org/10.1109/icis.2008.57
29 https://doi.org/10.1109/tcyb.2017.2696998
30 https://doi.org/10.1109/tie.2017.2784394
31 https://doi.org/10.1109/tkde.2002.1019208
32 https://doi.org/10.1109/tkde.2018.2801854
33 https://doi.org/10.1109/tsmc.2017.2679725
34 https://doi.org/10.1126/science.1242072
35 https://doi.org/10.1137/1.9781611972764.29
36 https://doi.org/10.1145/2020408.2020555
37 https://doi.org/10.1145/2522968.2522981
38 https://doi.org/10.1145/2695664.2695674
39 https://doi.org/10.1214/06-ba104
40 https://doi.org/10.2307/2528080
41 https://doi.org/10.5194/amt-9-347-2016
42 schema:datePublished 2019-04
43 schema:datePublishedReg 2019-04-01
44 schema:description Streaming large volumes of data has a wide range of real-world applications, e.g., video flows, internet calls, and online games etc. Thus, fast and real-time data stream processing is important. Traditionally, data clustering algorithms are efficient and effective to mine information from large data. However, they are mostly not suitable for online data stream clustering. Therefore, in this work, we propose a novel fast and grid based clustering algorithm for hybrid data stream (FGCH). Specifically, we have made the following main contributions: 1), we develop a non-uniform attenuation model to enhance the resistance to noise; 2), we propose a similarity calculation method for hybrid data, which can calculate the similarity more efficiently and accurately; and 3), we present a novel clustering center fast determination algorithm (CCFD), which can automatically determine the number, center, and radius of clusters. Our technique is compared with several state-of-art clustering algorithms. The experimental results show that our technique can achieve more than better clustering accuracy on average. Meanwhile, the running time is shorter compared with the closest algorithm.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N7dee886c29144bafa1d852b8b0916135
49 N80d8f08eab7a4a39a8030cf0be732dd2
50 sg:journal.1136076
51 schema:name FGCH: a fast and grid based clustering algorithm for hybrid data stream
52 schema:pagination 1228-1244
53 schema:productId N6a681d1488654762a034a7f13d71f8dd
54 N8362b7604ff74f79a2d4468137566a6c
55 Nc310b1ed7b9c496a8e62cd18f2f0b142
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107899741
57 https://doi.org/10.1007/s10489-018-1324-x
58 schema:sdDatePublished 2019-04-11T12:38
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N795fc066750841f1b529e8216a80f5a0
61 schema:url https://link.springer.com/10.1007%2Fs10489-018-1324-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1c624ad114884116b628e04980402cff rdf:first sg:person.013313755020.68
66 rdf:rest Na60a9818c8d9423d854d766d71a7c90f
67 N6a681d1488654762a034a7f13d71f8dd schema:name readcube_id
68 schema:value 2feb350ad23eab9c2b9468648beacdbe2b0fdf459b44e2eb5e86b8dc1ae362df
69 rdf:type schema:PropertyValue
70 N795fc066750841f1b529e8216a80f5a0 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N7dee886c29144bafa1d852b8b0916135 schema:volumeNumber 49
73 rdf:type schema:PublicationVolume
74 N80d8f08eab7a4a39a8030cf0be732dd2 schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 N8362b7604ff74f79a2d4468137566a6c schema:name dimensions_id
77 schema:value pub.1107899741
78 rdf:type schema:PropertyValue
79 N87109283c49745c7a7d37b89d4f2b49b rdf:first sg:person.014357027635.35
80 rdf:rest rdf:nil
81 Na60a9818c8d9423d854d766d71a7c90f rdf:first sg:person.01177056556.39
82 rdf:rest N87109283c49745c7a7d37b89d4f2b49b
83 Nc10e057168ef45f9ba59b224070f8692 rdf:first sg:person.011005650160.25
84 rdf:rest N1c624ad114884116b628e04980402cff
85 Nc310b1ed7b9c496a8e62cd18f2f0b142 schema:name doi
86 schema:value 10.1007/s10489-018-1324-x
87 rdf:type schema:PropertyValue
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1136076 schema:issn 0924-669X
95 1573-7497
96 schema:name Applied Intelligence
97 rdf:type schema:Periodical
98 sg:person.011005650160.25 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
99 schema:familyName Chen
100 schema:givenName Jinyin
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011005650160.25
102 rdf:type schema:Person
103 sg:person.01177056556.39 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
104 schema:familyName Xuan
105 schema:givenName Qi
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177056556.39
107 rdf:type schema:Person
108 sg:person.013313755020.68 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
109 schema:familyName Lin
110 schema:givenName Xiang
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013313755020.68
112 rdf:type schema:Person
113 sg:person.014357027635.35 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
114 schema:familyName Xiang
115 schema:givenName Yun
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357027635.35
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-319-11056-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009655103
119 https://doi.org/10.1007/978-3-319-11056-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-540-87481-2_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046891092
122 https://doi.org/10.1007/978-3-540-87481-2_41
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00180-006-0260-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041584936
125 https://doi.org/10.1007/s00180-006-0260-0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10115-013-0659-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030144595
128 https://doi.org/10.1007/s10115-013-0659-1
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10489-014-0526-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008917987
131 https://doi.org/10.1007/s10489-014-0526-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10489-015-0675-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028716342
134 https://doi.org/10.1007/s10489-015-0675-9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10489-017-0939-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085936281
137 https://doi.org/10.1007/s10489-017-0939-7
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/b978-012088469-8.50075-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011229469
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/b978-012722442-8/50016-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025616991
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.eswa.2005.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001435732
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.eswa.2011.01.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028145109
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.eswa.2016.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048630243
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ins.2016.01.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245406
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ins.2016.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005266597
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.is.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009307610
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.knosys.2016.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972499
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neucom.2013.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030343095
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neucom.2017.02.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084098372
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neucom.2017.03.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085742316
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.patcog.2011.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020692772
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.patcog.2016.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007487638
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/2.781637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106156
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/34.192473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155770
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/cec.2010.5586136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094341952
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/icis.2008.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094837994
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tcyb.2017.2696998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085466334
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tie.2017.2784394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099864671
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tkde.2002.1019208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661060
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tkde.2018.2801854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100848983
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tsmc.2017.2679725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084868276
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.1242072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027692695
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1137/1.9781611972764.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800103
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/2020408.2020555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031146203
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1145/2522968.2522981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011836058
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1145/2695664.2695674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049794230
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1214/06-ba104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389454
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2307/2528080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069973928
198 rdf:type schema:CreativeWork
199 https://doi.org/10.5194/amt-9-347-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072660977
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
202 schema:name The College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...