CMA evolution strategy assisted by kriging model and approximate ranking View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Changwu Huang, Bouchaïb Radi, Abdelkhalak El Hami, Hao Bai

ABSTRACT

The covariance matrix adaptation evolution strategy (CMA-ES) is a competitive evolutionary algorithm (EA) for difficult continuous optimization problems. However, expensive function evaluation of many real-world optimization problems poses a serious challenge to the application of CMA-ES (and other EAs) to these problems. To address this challenge, surrogate-assisted EAs has attracted increasing attention and become popular. In this paper, a new surrogate-assisted CMA-ES algorithm in which Kriging model is used to enhance CMA-ES via approximate ranking procedure is proposed. In the proposed algorithm, the approximate ranking procedure which estimates the rank of current population by using Kriging model and the exact fitness function together is adopted. In addition, the confidence interval method of training set selection is introduced for surrogate model construction. An initial sampling is performed before entering the evolution loop. In each iteration (generation), after the population sampling, the approximate ranking procedure is called instead of the original fitness evaluation, then, parameters of the sampling distribution are updated. This iterative search process continues until the target fitness is reached or the computational budget is exhausted. The proposed algorithm and confidence interval method of training set selection are analyzed through experimental study. The results demonstrate that the confidence interval method works well in Kriging-assisted CMA-ES, and that the proposed algorithm significantly reduces the number of function evaluations of CMA-ES and outperforms the Kriging-assisted CMA-ES using pre-selection and generation-based control on the tested problems. More... »

PAGES

4288-4304

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10489-018-1193-3

DOI

http://dx.doi.org/10.1007/s10489-018-1193-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104476210


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Changwu", 
        "id": "sg:person.012755405616.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755405616.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LIMII, FST Settat, BP: 577, Route de Casa, Settat, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radi", 
        "givenName": "Boucha\u00efb", 
        "id": "sg:person.012055526735.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055526735.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
          "id": "https://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "INSA Rouen, LMN, Normandie University, 76000, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El Hami", 
        "givenName": "Abdelkhalak", 
        "id": "sg:person.015440422653.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440422653.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
          "id": "https://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "INSA Rouen, LMN, Normandie University, 76000, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Hao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.asoc.2015.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000920626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0305215x.2016.1206537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002724314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008306431147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009040383", 
          "https://doi.org/10.1023/a:1008306431147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.swevo.2011.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016141497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-03422-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019135366", 
          "https://doi.org/10.1007/978-3-319-03422-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-03422-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019135366", 
          "https://doi.org/10.1007/978-3-319-03422-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-014-1283-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019733906", 
          "https://doi.org/10.1007/s00500-014-1283-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1020031969", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40137-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020031969", 
          "https://doi.org/10.1007/978-3-642-40137-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40137-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020031969", 
          "https://doi.org/10.1007/978-3-642-40137-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-45823-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020296720", 
          "https://doi.org/10.1007/978-3-319-45823-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0305215031000069672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021442609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-32494-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022688207", 
          "https://doi.org/10.1007/3-540-32494-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/315891.316014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022764796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-003-0328-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025730957", 
          "https://doi.org/10.1007/s00500-003-0328-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11844297_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026706558", 
          "https://doi.org/10.1007/11844297_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11844297_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026706558", 
          "https://doi.org/10.1007/11844297_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2004.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028496867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10701-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030734281", 
          "https://doi.org/10.1007/978-3-642-10701-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10701-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030734281", 
          "https://doi.org/10.1007/978-3-642-10701-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-016-8436-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031166554", 
          "https://doi.org/10.1007/s00170-016-8436-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/exsy.12105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034084963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12239-2_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037211453", 
          "https://doi.org/10.1007/978-3-642-12239-2_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12239-2_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037211453", 
          "https://doi.org/10.1007/978-3-642-12239-2_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015059928466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037495722", 
          "https://doi.org/10.1023/a:1015059928466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0056852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037717498", 
          "https://doi.org/10.1007/bfb0056852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45712-7_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037920333", 
          "https://doi.org/10.1007/3-540-45712-7_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45712-7_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037920333", 
          "https://doi.org/10.1007/3-540-45712-7_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30217-9_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042900678", 
          "https://doi.org/10.1007/978-3-540-30217-9_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30217-9_41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042900678", 
          "https://doi.org/10.1007/978-3-540-30217-9_41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365601750190398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043473749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28650-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046421471", 
          "https://doi.org/10.1007/978-3-540-28650-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28650-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046421471", 
          "https://doi.org/10.1007/978-3-540-28650-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-44511-1_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047217123", 
          "https://doi.org/10.1007/978-3-540-44511-1_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17022-5_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050764022", 
          "https://doi.org/10.1007/978-3-642-17022-5_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17022-5_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050764022", 
          "https://doi.org/10.1007/978-3-642-17022-5_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-003-0329-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300750", 
          "https://doi.org/10.1007/s00500-003-0329-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tech.2009.08040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177012413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijmmno.2013.055204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067475919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2017.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085094890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2017.2710978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086385717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/detc2003/dac-48762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092782166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2003.1299643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093422642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2001.934284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095349233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3067695.3082539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096107605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3067695.3082539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096107605"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The covariance matrix adaptation evolution strategy (CMA-ES) is a competitive evolutionary algorithm (EA) for difficult continuous optimization problems. However, expensive function evaluation of many real-world optimization problems poses a serious challenge to the application of CMA-ES (and other EAs) to these problems. To address this challenge, surrogate-assisted EAs has attracted increasing attention and become popular. In this paper, a new surrogate-assisted CMA-ES algorithm in which Kriging model is used to enhance CMA-ES via approximate ranking procedure is proposed. In the proposed algorithm, the approximate ranking procedure which estimates the rank of current population by using Kriging model and the exact fitness function together is adopted. In addition, the confidence interval method of training set selection is introduced for surrogate model construction. An initial sampling is performed before entering the evolution loop. In each iteration (generation), after the population sampling, the approximate ranking procedure is called instead of the original fitness evaluation, then, parameters of the sampling distribution are updated. This iterative search process continues until the target fitness is reached or the computational budget is exhausted. The proposed algorithm and confidence interval method of training set selection are analyzed through experimental study. The results demonstrate that the confidence interval method works well in Kriging-assisted CMA-ES, and that the proposed algorithm significantly reduces the number of function evaluations of CMA-ES and outperforms the Kriging-assisted CMA-ES using pre-selection and generation-based control on the tested problems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10489-018-1193-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136076", 
        "issn": [
          "0924-669X", 
          "1573-7497"
        ], 
        "name": "Applied Intelligence", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "CMA evolution strategy assisted by kriging model and approximate ranking", 
    "pagination": "4288-4304", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb2e969f6c7ced9f6ded6d1669ac8b42e54adb01382e1bd522bad0f0ae8fb352"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10489-018-1193-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104476210"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10489-018-1193-3", 
      "https://app.dimensions.ai/details/publication/pub.1104476210"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10489-018-1193-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1193-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1193-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1193-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-1193-3'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10489-018-1193-3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4aa1564f82144fcba0adbc721acc778b
4 schema:citation sg:pub.10.1007/11844297_95
5 sg:pub.10.1007/3-540-32494-1_4
6 sg:pub.10.1007/3-540-45712-7_35
7 sg:pub.10.1007/978-3-319-03422-5
8 sg:pub.10.1007/978-3-319-45823-6_6
9 sg:pub.10.1007/978-3-540-28650-9_4
10 sg:pub.10.1007/978-3-540-30217-9_41
11 sg:pub.10.1007/978-3-540-44511-1_16
12 sg:pub.10.1007/978-3-642-10701-6_1
13 sg:pub.10.1007/978-3-642-12239-2_42
14 sg:pub.10.1007/978-3-642-17022-5_56
15 sg:pub.10.1007/978-3-642-40137-4
16 sg:pub.10.1007/bfb0056852
17 sg:pub.10.1007/s00170-016-8436-4
18 sg:pub.10.1007/s00500-003-0328-5
19 sg:pub.10.1007/s00500-003-0329-4
20 sg:pub.10.1007/s00500-014-1283-z
21 sg:pub.10.1023/a:1008306431147
22 sg:pub.10.1023/a:1015059928466
23 https://app.dimensions.ai/details/publication/pub.1020031969
24 https://doi.org/10.1016/j.asoc.2015.06.010
25 https://doi.org/10.1016/j.asoc.2017.04.017
26 https://doi.org/10.1016/j.strusafe.2004.09.001
27 https://doi.org/10.1016/j.swevo.2011.05.001
28 https://doi.org/10.1080/0305215031000069672
29 https://doi.org/10.1080/0305215x.2016.1206537
30 https://doi.org/10.1109/cec.2001.934284
31 https://doi.org/10.1109/cec.2003.1299643
32 https://doi.org/10.1109/tcyb.2017.2710978
33 https://doi.org/10.1111/exsy.12105
34 https://doi.org/10.1115/detc2003/dac-48762
35 https://doi.org/10.1145/3067695.3082539
36 https://doi.org/10.1145/315891.316014
37 https://doi.org/10.1162/106365601750190398
38 https://doi.org/10.1198/tech.2009.08040
39 https://doi.org/10.1214/ss/1177012413
40 https://doi.org/10.1504/ijmmno.2013.055204
41 schema:datePublished 2018-11
42 schema:datePublishedReg 2018-11-01
43 schema:description The covariance matrix adaptation evolution strategy (CMA-ES) is a competitive evolutionary algorithm (EA) for difficult continuous optimization problems. However, expensive function evaluation of many real-world optimization problems poses a serious challenge to the application of CMA-ES (and other EAs) to these problems. To address this challenge, surrogate-assisted EAs has attracted increasing attention and become popular. In this paper, a new surrogate-assisted CMA-ES algorithm in which Kriging model is used to enhance CMA-ES via approximate ranking procedure is proposed. In the proposed algorithm, the approximate ranking procedure which estimates the rank of current population by using Kriging model and the exact fitness function together is adopted. In addition, the confidence interval method of training set selection is introduced for surrogate model construction. An initial sampling is performed before entering the evolution loop. In each iteration (generation), after the population sampling, the approximate ranking procedure is called instead of the original fitness evaluation, then, parameters of the sampling distribution are updated. This iterative search process continues until the target fitness is reached or the computational budget is exhausted. The proposed algorithm and confidence interval method of training set selection are analyzed through experimental study. The results demonstrate that the confidence interval method works well in Kriging-assisted CMA-ES, and that the proposed algorithm significantly reduces the number of function evaluations of CMA-ES and outperforms the Kriging-assisted CMA-ES using pre-selection and generation-based control on the tested problems.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N2ed443eff6ac467791fd53859354cd83
48 N7274910aab754041a3df5e2d3ab8e865
49 sg:journal.1136076
50 schema:name CMA evolution strategy assisted by kriging model and approximate ranking
51 schema:pagination 4288-4304
52 schema:productId N20b6ba1f3aca41499d1bbb7c4aa03401
53 Naadb13e5c2fb46b5bbd1332b70ec6571
54 Nab3538033a5846c29836b318440901e6
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476210
56 https://doi.org/10.1007/s10489-018-1193-3
57 schema:sdDatePublished 2019-04-10T23:31
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nb5e63bf1ef1d47bba576b38521aae72f
60 schema:url https://link.springer.com/10.1007%2Fs10489-018-1193-3
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N102d62b841774180b6573830347130a4 schema:name LIMII, FST Settat, BP: 577, Route de Casa, Settat, Morocco
65 rdf:type schema:Organization
66 N107cb7790b7445e095ec2d1af64cf628 rdf:first N7fccf289ec094ee6b1bf6d5f352e71cf
67 rdf:rest rdf:nil
68 N20b6ba1f3aca41499d1bbb7c4aa03401 schema:name readcube_id
69 schema:value eb2e969f6c7ced9f6ded6d1669ac8b42e54adb01382e1bd522bad0f0ae8fb352
70 rdf:type schema:PropertyValue
71 N2ed443eff6ac467791fd53859354cd83 schema:issueNumber 11
72 rdf:type schema:PublicationIssue
73 N32fb50de6ffb49d6baa2ca63b4b38bfd rdf:first sg:person.012055526735.25
74 rdf:rest Nce72fabdff2e44f783f3fa4064b3f950
75 N4aa1564f82144fcba0adbc721acc778b rdf:first sg:person.012755405616.93
76 rdf:rest N32fb50de6ffb49d6baa2ca63b4b38bfd
77 N7274910aab754041a3df5e2d3ab8e865 schema:volumeNumber 48
78 rdf:type schema:PublicationVolume
79 N7fccf289ec094ee6b1bf6d5f352e71cf schema:affiliation https://www.grid.ac/institutes/grid.435013.0
80 schema:familyName Bai
81 schema:givenName Hao
82 rdf:type schema:Person
83 N823468f9366c4163a8b2691d8ca9152a schema:name Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
84 rdf:type schema:Organization
85 Naadb13e5c2fb46b5bbd1332b70ec6571 schema:name doi
86 schema:value 10.1007/s10489-018-1193-3
87 rdf:type schema:PropertyValue
88 Nab3538033a5846c29836b318440901e6 schema:name dimensions_id
89 schema:value pub.1104476210
90 rdf:type schema:PropertyValue
91 Nb5e63bf1ef1d47bba576b38521aae72f schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nce72fabdff2e44f783f3fa4064b3f950 rdf:first sg:person.015440422653.55
94 rdf:rest N107cb7790b7445e095ec2d1af64cf628
95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
99 schema:name Numerical and Computational Mathematics
100 rdf:type schema:DefinedTerm
101 sg:journal.1136076 schema:issn 0924-669X
102 1573-7497
103 schema:name Applied Intelligence
104 rdf:type schema:Periodical
105 sg:person.012055526735.25 schema:affiliation N102d62b841774180b6573830347130a4
106 schema:familyName Radi
107 schema:givenName Bouchaïb
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055526735.25
109 rdf:type schema:Person
110 sg:person.012755405616.93 schema:affiliation N823468f9366c4163a8b2691d8ca9152a
111 schema:familyName Huang
112 schema:givenName Changwu
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755405616.93
114 rdf:type schema:Person
115 sg:person.015440422653.55 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
116 schema:familyName El Hami
117 schema:givenName Abdelkhalak
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440422653.55
119 rdf:type schema:Person
120 sg:pub.10.1007/11844297_95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706558
121 https://doi.org/10.1007/11844297_95
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/3-540-32494-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688207
124 https://doi.org/10.1007/3-540-32494-1_4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/3-540-45712-7_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037920333
127 https://doi.org/10.1007/3-540-45712-7_35
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-319-03422-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019135366
130 https://doi.org/10.1007/978-3-319-03422-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/978-3-319-45823-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020296720
133 https://doi.org/10.1007/978-3-319-45823-6_6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-540-28650-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046421471
136 https://doi.org/10.1007/978-3-540-28650-9_4
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-540-30217-9_41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042900678
139 https://doi.org/10.1007/978-3-540-30217-9_41
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-540-44511-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047217123
142 https://doi.org/10.1007/978-3-540-44511-1_16
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-642-10701-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030734281
145 https://doi.org/10.1007/978-3-642-10701-6_1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-642-12239-2_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037211453
148 https://doi.org/10.1007/978-3-642-12239-2_42
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-17022-5_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050764022
151 https://doi.org/10.1007/978-3-642-17022-5_56
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-3-642-40137-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031969
154 https://doi.org/10.1007/978-3-642-40137-4
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bfb0056852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037717498
157 https://doi.org/10.1007/bfb0056852
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00170-016-8436-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166554
160 https://doi.org/10.1007/s00170-016-8436-4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00500-003-0328-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730957
163 https://doi.org/10.1007/s00500-003-0328-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00500-003-0329-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300750
166 https://doi.org/10.1007/s00500-003-0329-4
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00500-014-1283-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019733906
169 https://doi.org/10.1007/s00500-014-1283-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1023/a:1008306431147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040383
172 https://doi.org/10.1023/a:1008306431147
173 rdf:type schema:CreativeWork
174 sg:pub.10.1023/a:1015059928466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495722
175 https://doi.org/10.1023/a:1015059928466
176 rdf:type schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1020031969 schema:CreativeWork
178 https://doi.org/10.1016/j.asoc.2015.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000920626
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.asoc.2017.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085094890
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.strusafe.2004.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028496867
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.swevo.2011.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016141497
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/0305215031000069672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021442609
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/0305215x.2016.1206537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002724314
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/cec.2001.934284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095349233
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/cec.2003.1299643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093422642
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tcyb.2017.2710978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086385717
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/exsy.12105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034084963
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1115/detc2003/dac-48762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092782166
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1145/3067695.3082539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096107605
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1145/315891.316014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022764796
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1162/106365601750190398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043473749
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1198/tech.2009.08040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199703
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1504/ijmmno.2013.055204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067475919
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.435013.0 schema:alternateName Institut National des Sciences Appliquées de Rouen
213 schema:name INSA Rouen, LMN, Normandie University, 76000, Rouen, France
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...