A new hybrid approach for intrusion detection using machine learning methods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-04

AUTHORS

Ünal Çavuşoğlu

ABSTRACT

In this study, a hybrid and layered Intrusion Detection System (IDS) is proposed that uses a combination of different machine learning and feature selection techniques to provide high performance intrusion detection in different attack types. In the developed system, firstly data preprocessing is performed on the NSL-KDD dataset, then by using different feature selection algorithms, the size of the dataset is reduced. Two new approaches have been proposed for feature selection operation. The layered architecture is created by determining appropriate machine learning algorithms according to attack type. Performance tests such as accuracy, DR, TP Rate, FP Rate, F-Measure, MCC and time of the proposed system are performed on the NSL-KDD dataset. In order to demonstrate the performance of the proposed system, it is compared with the studies in the literature and performance evaluation is done. It has been shown that the proposed system has high accuracy and a low false positive rates in all attack types. More... »

PAGES

1-27

References to SciGraph publications

  • 2017-09-21. Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation in CLUSTER COMPUTING
  • 2018-01. A Hybrid Feature Selection Method for Improved Detection of Wired/Wireless Network Intrusions in WIRELESS PERSONAL COMMUNICATIONS
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2016-03. A feature selection approach to find optimal feature subsets for the network intrusion detection system in CLUSTER COMPUTING
  • 2006-11. Machine learning: a review of classification and combining techniques in ARTIFICIAL INTELLIGENCE REVIEW
  • 2018-03-27. A hybrid multi-layer intrusion detection system in cloud in CLUSTER COMPUTING
  • 2018-08. A new evolutionary neural networks based on intrusion detection systems using multiverse optimization in APPLIED INTELLIGENCE
  • 2018-04-28. A study on supervised machine learning algorithm to improvise intrusion detection systems for mobile ad hoc networks in CLUSTER COMPUTING
  • 2012-09. Intrusion detection using reduced-size RNN based on feature grouping in NEURAL COMPUTING AND APPLICATIONS
  • 2019-03. A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and optimized SVM classifiers in ARTIFICIAL INTELLIGENCE REVIEW
  • 2017-09-05. An enhanced J48 classification algorithm for the anomaly intrusion detection systems in CLUSTER COMPUTING
  • 2017-10-31. An Intrusion Detection Framework Based on Hybrid Multi-Level Data Mining in INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
  • 2016-12. Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • 2018-01-16. Anomaly network traffic detection algorithm based on information entropy measurement under the cloud computing environment in CLUSTER COMPUTING
  • 2016-10. An Efficient Hybrid Anomaly Detection Scheme Using K-Means Clustering for Wireless Sensor Networks in WIRELESS PERSONAL COMMUNICATIONS
  • 2017-12. An effective combining classifier approach using tree algorithms for network intrusion detection in NEURAL COMPUTING AND APPLICATIONS
  • 2016-08. A hybrid method consisting of GA and SVM for intrusion detection system in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10489-018-01408-x

    DOI

    http://dx.doi.org/10.1007/s10489-018-01408-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111914690


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sakarya University", 
              "id": "https://www.grid.ac/institutes/grid.49746.38", 
              "name": [
                "Department of Computer Engineering, Sakarya University, 54187, Serdivan, Sakarya, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00c7avu\u015fo\u011flu", 
            "givenName": "\u00dcnal", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.neucom.2016.06.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007153733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.06.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009255713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nem.804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009786658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-010-0487-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009941426", 
              "https://doi.org/10.1007/s00521-010-0487-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-010-0487-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009941426", 
              "https://doi.org/10.1007/s00521-010-0487-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comcom.2005.01.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010713158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2005.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012154471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-015-0527-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012598913", 
              "https://doi.org/10.1007/s10586-015-0527-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-016-0623-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013847741", 
              "https://doi.org/10.1186/s13638-016-0623-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-016-0623-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013847741", 
              "https://doi.org/10.1186/s13638-016-0623-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.06.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015093645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2808691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015584963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2010.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017493919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.07.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018233360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.08.089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019842829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023254877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.protcy.2012.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023342214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.isprsjprs.2011.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023525840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.07.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027977698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2016.01.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028233095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2014.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029207981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030075721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1541880.1541882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030762489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031014012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2012.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032436117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/294761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032946688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.08.066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035671766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2016.04.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035921876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-016-3433-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036130035", 
              "https://doi.org/10.1007/s11277-016-3433-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-016-3433-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036130035", 
              "https://doi.org/10.1007/s11277-016-3433-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2418-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036201625", 
              "https://doi.org/10.1007/s00521-016-2418-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2418-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036201625", 
              "https://doi.org/10.1007/s00521-016-2418-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2015.03.174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037254907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1269880.1269882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037474790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comcom.2011.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038355693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038506776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-007-9052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039034612", 
              "https://doi.org/10.1007/s10462-007-9052-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-007-9052-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039034612", 
              "https://doi.org/10.1007/s10462-007-9052-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2014.01.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1363686.1363897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040915843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9473(03)00177-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041914341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9473(03)00177-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041914341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2016.09.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044428400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-015-1964-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044462211", 
              "https://doi.org/10.1007/s00521-015-1964-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2013.06.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044849731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.02.102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045965922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asej.2013.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047806211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compeleceng.2013.11.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048813730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asoc.2012.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050378341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2015.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051027811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jnca.2011.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051687188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.12.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052418202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-55860-335-6.50023-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052966378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/bxv078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059480868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.376493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061122112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.667881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tc.2016.2519914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061536180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcc.2015.2511764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061541996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2005.66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2009.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tse.1987.232894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061788065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijhit.2015.8.1.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067235480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijhit.2015.8.1.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067235480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14445/22315381/ijett-v9p296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067317795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14569/ijacsa.2016.070603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067339980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jnw.9.5.1274-1280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072451653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5120/12065-8172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072594568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5121/ijnsa.2012.4208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072619687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5815/ijmsc.2016.04.04", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073151145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.9790/0661-16471626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074162182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsg.2017.2702125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085483622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-017-9567-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090344593", 
              "https://doi.org/10.1007/s10462-017-9567-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-017-9567-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090344593", 
              "https://doi.org/10.1007/s10462-017-9567-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-017-9567-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090344593", 
              "https://doi.org/10.1007/s10462-017-9567-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2017.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090387603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-017-1109-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091477539", 
              "https://doi.org/10.1007/s10586-017-1109-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11277-017-4949-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091508144", 
              "https://doi.org/10.1007/s11277-017-4949-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-017-1187-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091890435", 
              "https://doi.org/10.1007/s10586-017-1187-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10766-017-0537-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092459645", 
              "https://doi.org/10.1007/s10766-017-0537-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-017-1085-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092567708", 
              "https://doi.org/10.1007/s10489-017-1085-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nas.2013.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093440018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/anziis.1994.396988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094760510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/skima.2014.7083539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095181688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511921803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098728832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-018-1755-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100424619", 
              "https://doi.org/10.1007/s10586-018-1755-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2018.01.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100736846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-018-2557-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101794196", 
              "https://doi.org/10.1007/s10586-018-2557-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-018-2557-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101794196", 
              "https://doi.org/10.1007/s10586-018-2557-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-018-2686-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103675675", 
              "https://doi.org/10.1007/s10586-018-2686-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10586-018-2686-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103675675", 
              "https://doi.org/10.1007/s10586-018-2686-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579486"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-04", 
        "datePublishedReg": "2019-02-04", 
        "description": "In this study, a hybrid and layered Intrusion Detection System (IDS) is proposed that uses a combination of different machine learning and feature selection techniques to provide high performance intrusion detection in different attack types. In the developed system, firstly data preprocessing is performed on the NSL-KDD dataset, then by using different feature selection algorithms, the size of the dataset is reduced. Two new approaches have been proposed for feature selection operation. The layered architecture is created by determining appropriate machine learning algorithms according to attack type. Performance tests such as accuracy, DR, TP Rate, FP Rate, F-Measure, MCC and time of the proposed system are performed on the NSL-KDD dataset. In order to demonstrate the performance of the proposed system, it is compared with the studies in the literature and performance evaluation is done. It has been shown that the proposed system has high accuracy and a low false positive rates in all attack types.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10489-018-01408-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136076", 
            "issn": [
              "0924-669X", 
              "1573-7497"
            ], 
            "name": "Applied Intelligence", 
            "type": "Periodical"
          }
        ], 
        "name": "A new hybrid approach for intrusion detection using machine learning methods", 
        "pagination": "1-27", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a3565bb3de282be25c28e6fd686b58288877a873a14fcd986a18b3d9e5259625"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10489-018-01408-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111914690"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10489-018-01408-x", 
          "https://app.dimensions.ai/details/publication/pub.1111914690"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000329_0000000329/records_74704_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10489-018-01408-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-01408-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-01408-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-01408-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10489-018-01408-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    317 TRIPLES      21 PREDICATES      106 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10489-018-01408-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb27a0ca3da1d4187a3189d552bc7a594
    4 schema:citation sg:pub.10.1007/s00521-010-0487-0
    5 sg:pub.10.1007/s00521-015-1964-2
    6 sg:pub.10.1007/s00521-016-2418-1
    7 sg:pub.10.1007/s10462-007-9052-3
    8 sg:pub.10.1007/s10462-017-9567-1
    9 sg:pub.10.1007/s10489-017-1085-y
    10 sg:pub.10.1007/s10586-015-0527-8
    11 sg:pub.10.1007/s10586-017-1109-8
    12 sg:pub.10.1007/s10586-017-1187-7
    13 sg:pub.10.1007/s10586-018-1755-5
    14 sg:pub.10.1007/s10586-018-2557-5
    15 sg:pub.10.1007/s10586-018-2686-x
    16 sg:pub.10.1007/s10766-017-0537-7
    17 sg:pub.10.1007/s11277-016-3433-3
    18 sg:pub.10.1007/s11277-017-4949-x
    19 sg:pub.10.1023/a:1010933404324
    20 sg:pub.10.1186/s13638-016-0623-3
    21 https://doi.org/10.1002/nem.804
    22 https://doi.org/10.1016/b978-1-55860-335-6.50023-4
    23 https://doi.org/10.1016/j.asej.2013.01.003
    24 https://doi.org/10.1016/j.asoc.2010.12.004
    25 https://doi.org/10.1016/j.asoc.2012.05.004
    26 https://doi.org/10.1016/j.asoc.2014.01.028
    27 https://doi.org/10.1016/j.comcom.2005.01.014
    28 https://doi.org/10.1016/j.comcom.2011.07.001
    29 https://doi.org/10.1016/j.compeleceng.2013.11.024
    30 https://doi.org/10.1016/j.eswa.2005.05.002
    31 https://doi.org/10.1016/j.eswa.2010.02.102
    32 https://doi.org/10.1016/j.eswa.2010.06.048
    33 https://doi.org/10.1016/j.eswa.2010.06.066
    34 https://doi.org/10.1016/j.eswa.2011.07.032
    35 https://doi.org/10.1016/j.eswa.2013.08.066
    36 https://doi.org/10.1016/j.eswa.2013.08.089
    37 https://doi.org/10.1016/j.eswa.2013.12.048
    38 https://doi.org/10.1016/j.eswa.2014.11.009
    39 https://doi.org/10.1016/j.eswa.2015.02.001
    40 https://doi.org/10.1016/j.eswa.2015.07.015
    41 https://doi.org/10.1016/j.eswa.2016.09.041
    42 https://doi.org/10.1016/j.eswa.2017.07.005
    43 https://doi.org/10.1016/j.eswa.2018.01.041
    44 https://doi.org/10.1016/j.future.2013.06.027
    45 https://doi.org/10.1016/j.ins.2016.01.033
    46 https://doi.org/10.1016/j.ins.2016.04.019
    47 https://doi.org/10.1016/j.isprsjprs.2011.11.002
    48 https://doi.org/10.1016/j.jnca.2011.01.002
    49 https://doi.org/10.1016/j.jnca.2012.09.004
    50 https://doi.org/10.1016/j.jnca.2015.12.004
    51 https://doi.org/10.1016/j.knosys.2014.08.013
    52 https://doi.org/10.1016/j.knosys.2015.01.009
    53 https://doi.org/10.1016/j.neucom.2016.06.021
    54 https://doi.org/10.1016/j.procs.2015.03.174
    55 https://doi.org/10.1016/j.protcy.2012.05.017
    56 https://doi.org/10.1016/s0004-3702(97)00043-x
    57 https://doi.org/10.1016/s0167-9473(03)00177-4
    58 https://doi.org/10.1017/cbo9780511921803
    59 https://doi.org/10.1093/comjnl/bxv078
    60 https://doi.org/10.1109/21.376493
    61 https://doi.org/10.1109/34.667881
    62 https://doi.org/10.1109/anziis.1994.396988
    63 https://doi.org/10.1109/nas.2013.49
    64 https://doi.org/10.1109/skima.2014.7083539
    65 https://doi.org/10.1109/tc.2016.2519914
    66 https://doi.org/10.1109/tcc.2015.2511764
    67 https://doi.org/10.1109/tkde.2005.66
    68 https://doi.org/10.1109/tpami.2009.187
    69 https://doi.org/10.1109/tse.1987.232894
    70 https://doi.org/10.1109/tsg.2017.2702125
    71 https://doi.org/10.1145/1269880.1269882
    72 https://doi.org/10.1145/1363686.1363897
    73 https://doi.org/10.1145/1541880.1541882
    74 https://doi.org/10.1145/2808691
    75 https://doi.org/10.1155/2015/294761
    76 https://doi.org/10.14257/ijhit.2015.8.1.14
    77 https://doi.org/10.14445/22315381/ijett-v9p296
    78 https://doi.org/10.14569/ijacsa.2016.070603
    79 https://doi.org/10.1613/jair.614
    80 https://doi.org/10.2307/2346830
    81 https://doi.org/10.4304/jnw.9.5.1274-1280
    82 https://doi.org/10.5120/12065-8172
    83 https://doi.org/10.5121/ijnsa.2012.4208
    84 https://doi.org/10.5815/ijmsc.2016.04.04
    85 https://doi.org/10.9790/0661-16471626
    86 schema:datePublished 2019-02-04
    87 schema:datePublishedReg 2019-02-04
    88 schema:description In this study, a hybrid and layered Intrusion Detection System (IDS) is proposed that uses a combination of different machine learning and feature selection techniques to provide high performance intrusion detection in different attack types. In the developed system, firstly data preprocessing is performed on the NSL-KDD dataset, then by using different feature selection algorithms, the size of the dataset is reduced. Two new approaches have been proposed for feature selection operation. The layered architecture is created by determining appropriate machine learning algorithms according to attack type. Performance tests such as accuracy, DR, TP Rate, FP Rate, F-Measure, MCC and time of the proposed system are performed on the NSL-KDD dataset. In order to demonstrate the performance of the proposed system, it is compared with the studies in the literature and performance evaluation is done. It has been shown that the proposed system has high accuracy and a low false positive rates in all attack types.
    89 schema:genre research_article
    90 schema:inLanguage en
    91 schema:isAccessibleForFree false
    92 schema:isPartOf sg:journal.1136076
    93 schema:name A new hybrid approach for intrusion detection using machine learning methods
    94 schema:pagination 1-27
    95 schema:productId N357aaa9cba104ccda9978513a59caf54
    96 Nb585674cd4f3451d9281bfda66a599d5
    97 Ncc6260390c5b4ba9bc876b513f01b668
    98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111914690
    99 https://doi.org/10.1007/s10489-018-01408-x
    100 schema:sdDatePublished 2019-04-11T09:01
    101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    102 schema:sdPublisher Nedfa094a659b49a5b656bd503b826e6c
    103 schema:url https://link.springer.com/10.1007%2Fs10489-018-01408-x
    104 sgo:license sg:explorer/license/
    105 sgo:sdDataset articles
    106 rdf:type schema:ScholarlyArticle
    107 N11acc71988ba4a39919db86447698dbe schema:affiliation https://www.grid.ac/institutes/grid.49746.38
    108 schema:familyName Çavuşoğlu
    109 schema:givenName Ünal
    110 rdf:type schema:Person
    111 N357aaa9cba104ccda9978513a59caf54 schema:name readcube_id
    112 schema:value a3565bb3de282be25c28e6fd686b58288877a873a14fcd986a18b3d9e5259625
    113 rdf:type schema:PropertyValue
    114 Nb27a0ca3da1d4187a3189d552bc7a594 rdf:first N11acc71988ba4a39919db86447698dbe
    115 rdf:rest rdf:nil
    116 Nb585674cd4f3451d9281bfda66a599d5 schema:name doi
    117 schema:value 10.1007/s10489-018-01408-x
    118 rdf:type schema:PropertyValue
    119 Ncc6260390c5b4ba9bc876b513f01b668 schema:name dimensions_id
    120 schema:value pub.1111914690
    121 rdf:type schema:PropertyValue
    122 Nedfa094a659b49a5b656bd503b826e6c schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Information and Computing Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Artificial Intelligence and Image Processing
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1136076 schema:issn 0924-669X
    131 1573-7497
    132 schema:name Applied Intelligence
    133 rdf:type schema:Periodical
    134 sg:pub.10.1007/s00521-010-0487-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009941426
    135 https://doi.org/10.1007/s00521-010-0487-0
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00521-015-1964-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044462211
    138 https://doi.org/10.1007/s00521-015-1964-2
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00521-016-2418-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036201625
    141 https://doi.org/10.1007/s00521-016-2418-1
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s10462-007-9052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039034612
    144 https://doi.org/10.1007/s10462-007-9052-3
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10462-017-9567-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090344593
    147 https://doi.org/10.1007/s10462-017-9567-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10489-017-1085-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092567708
    150 https://doi.org/10.1007/s10489-017-1085-y
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10586-015-0527-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012598913
    153 https://doi.org/10.1007/s10586-015-0527-8
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10586-017-1109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091477539
    156 https://doi.org/10.1007/s10586-017-1109-8
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10586-017-1187-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091890435
    159 https://doi.org/10.1007/s10586-017-1187-7
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10586-018-1755-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424619
    162 https://doi.org/10.1007/s10586-018-1755-5
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10586-018-2557-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101794196
    165 https://doi.org/10.1007/s10586-018-2557-5
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10586-018-2686-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103675675
    168 https://doi.org/10.1007/s10586-018-2686-x
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10766-017-0537-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092459645
    171 https://doi.org/10.1007/s10766-017-0537-7
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11277-016-3433-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036130035
    174 https://doi.org/10.1007/s11277-016-3433-3
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11277-017-4949-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091508144
    177 https://doi.org/10.1007/s11277-017-4949-x
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    180 https://doi.org/10.1023/a:1010933404324
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1186/s13638-016-0623-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013847741
    183 https://doi.org/10.1186/s13638-016-0623-3
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1002/nem.804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009786658
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/b978-1-55860-335-6.50023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052966378
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.asej.2013.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047806211
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.asoc.2010.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017493919
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.asoc.2012.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050378341
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.asoc.2014.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040007428
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.comcom.2005.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010713158
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.comcom.2011.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038355693
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.compeleceng.2013.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048813730
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.eswa.2005.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012154471
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.eswa.2010.02.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045965922
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.eswa.2010.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015093645
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.eswa.2010.06.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009255713
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.eswa.2011.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027977698
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.eswa.2013.08.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035671766
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.eswa.2013.08.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019842829
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.eswa.2013.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052418202
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.eswa.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030075721
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.eswa.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023254877
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.eswa.2015.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018233360
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.eswa.2016.09.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044428400
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.eswa.2017.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090387603
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.eswa.2018.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100736846
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.future.2013.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044849731
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.ins.2016.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028233095
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.ins.2016.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035921876
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.isprsjprs.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023525840
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.jnca.2011.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051687188
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.jnca.2012.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032436117
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.jnca.2015.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051027811
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.knosys.2014.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029207981
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.knosys.2015.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038506776
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.neucom.2016.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007153733
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/j.procs.2015.03.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037254907
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/j.protcy.2012.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023342214
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/s0167-9473(03)00177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041914341
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1017/cbo9780511921803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098728832
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/comjnl/bxv078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059480868
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1109/21.376493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122112
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1109/anziis.1994.396988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094760510
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1109/nas.2013.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093440018
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1109/skima.2014.7083539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095181688
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1109/tc.2016.2519914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061536180
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1109/tcc.2015.2511764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541996
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1109/tkde.2005.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661468
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1109/tpami.2009.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743754
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1109/tse.1987.232894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061788065
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1109/tsg.2017.2702125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085483622
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1145/1269880.1269882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037474790
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1145/1363686.1363897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040915843
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1145/1541880.1541882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762489
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1145/2808691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015584963
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1155/2015/294761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032946688
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.14257/ijhit.2015.8.1.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067235480
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.14445/22315381/ijett-v9p296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067317795
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.14569/ijacsa.2016.070603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067339980
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1613/jair.614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579486
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.4304/jnw.9.5.1274-1280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072451653
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.5120/12065-8172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072594568
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.5121/ijnsa.2012.4208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072619687
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.5815/ijmsc.2016.04.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073151145
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.9790/0661-16471626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074162182
    314 rdf:type schema:CreativeWork
    315 https://www.grid.ac/institutes/grid.49746.38 schema:alternateName Sakarya University
    316 schema:name Department of Computer Engineering, Sakarya University, 54187, Serdivan, Sakarya, Turkey
    317 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...